From 7d12773e94b3d0f37e4cc2a3727261e259283c89 Mon Sep 17 00:00:00 2001
From: su530201 <olivier.kaufmann@umons.ac.be>
Date: Fri, 6 Oct 2023 13:13:41 +0200
Subject: [PATCH] Cleans up

---
 ohmpi/hardware_components/mb_2024_0_2_bkp.py | 354 +++++++++++++++++++
 1 file changed, 354 insertions(+)
 create mode 100644 ohmpi/hardware_components/mb_2024_0_2_bkp.py

diff --git a/ohmpi/hardware_components/mb_2024_0_2_bkp.py b/ohmpi/hardware_components/mb_2024_0_2_bkp.py
new file mode 100644
index 00000000..dc8adbfd
--- /dev/null
+++ b/ohmpi/hardware_components/mb_2024_0_2_bkp.py
@@ -0,0 +1,354 @@
+import datetime
+import importlib
+from ohmpi.config import HARDWARE_CONFIG  # TODO: Remove references at config here -> move it in ohmpi_hardware as done for mux_2024
+import adafruit_ads1x15.ads1115 as ads  # noqa
+from adafruit_ads1x15.analog_in import AnalogIn  # noqa
+from adafruit_ads1x15.ads1x15 import Mode  # noqa
+from adafruit_mcp230xx.mcp23008 import MCP23008  # noqa
+from digitalio import Direction  # noqa
+import minimalmodbus  # noqa
+from busio import I2C  # noqa
+import time
+import numpy as np
+import os
+from ohmpi.hardware_components import TxAbstract, RxAbstract
+from ohmpi.utils import enforce_specs
+# ctl_name = HARDWARE_CONFIG['ctl'].pop('board_name', 'raspberry_pi')
+# ctl_connection = HARDWARE_CONFIG['ctl'].pop('connection', 'i2c')
+# ctl_module = importlib.import_module(f'ohmpi.hardware_components.{ctl_name}')
+#
+# TX_CONFIG = HARDWARE_CONFIG['tx']
+# RX_CONFIG = HARDWARE_CONFIG['rx']
+
+# hardware characteristics and limitations
+# voltages are given in mV, currents in mA, sampling rates in Hz and data_rate in S/s
+SPECS = {'rx': {'sampling_rate': {'min': 2., 'default': 10., 'max': 100.},
+                'data_rate': {'default': 860.},
+                'bias':  {'min': -5000., 'default': 0., 'max': 5000.},
+                'coef_p2': {'default': 2.50},
+                'voltage_min': {'default': 10.0},
+                },
+         'tx': {'adc_voltage_min': {'default': 10.},  # Minimum voltage value used in vmin strategy
+                'adc_voltage_max': {'default': 4500.},  # Maximum voltage on ads1115 used to measure current
+                'voltage_max': {'min': 0., 'default': 12., 'max': 12.},  # Maximum input voltage
+                'data_rate': {'default': 860.},
+                'compatible_power_sources': {'default': 'pwr_batt', 'others' : ['dps5005']},
+                'r_shunt':  {'min': 0., 'default': 2. },
+                'activation_delay': {'default': 0.005},  # Max turn on time of 211EH relays = 5ms
+                'release_delay': {'default': 0.001},  # Max turn off time of 211EH relays = 1ms
+                }}
+
+# TODO: move low_battery spec in pwr
+#
+# # hardware characteristics and limitations
+# # *** RX ***
+# # ADC for voltage
+# voltage_adc_voltage_min = 10.  # mV
+# voltage_adc_voltage_max = 4500.  # mV
+# sampling_rate = 20.  # Hz
+# data_rate = 860.  # S/s?
+# rx_mcp_board_address = 0x27
+# RX_CONFIG['voltage_min'] = np.min([voltage_adc_voltage_min, RX_CONFIG.pop('voltage_min', np.inf)])  # mV
+# RX_CONFIG['voltage_max'] = np.min([voltage_adc_voltage_max, RX_CONFIG.pop('voltage_max', np.inf)])  # mV
+# RX_CONFIG['sampling_rate'] = RX_CONFIG.pop('sampling_rate', sampling_rate)
+# RX_CONFIG['data_rate'] = RX_CONFIG.pop('data_rate', data_rate)
+# # RX_CONFIG['coef_p2'] = RX_CONFIG.pop('coef_p2', 2.5)
+# RX_CONFIG['latency'] = RX_CONFIG.pop('latency', 0.01)
+# RX_CONFIG['bias'] = RX_CONFIG.pop('bias', 0.)
+# RX_CONFIG['mcp_board_address'] = TX_CONFIG.pop('mcp_board_address', tx_mcp_board_address)
+#
+#
+# # *** TX ***
+# # ADC for current
+# current_adc_voltage_min = 10.  # mV
+# current_adc_voltage_max = 4500.  # mV
+# low_battery = 12.  # V (conventional value as it is not measured on this board)
+# tx_mcp_board_address = 0x21  #
+# # pwr_voltage_max = 12.  # V
+# # pwr_default_voltage = 12.  # V
+# # pwr_switch_on_warmup = 0.  # seconds
+#
+# TX_CONFIG['current_min'] = np.min([current_adc_voltage_min / (TX_CONFIG['r_shunt'] * 50),
+#                                    TX_CONFIG.pop('current_min', np.inf)])  # mA
+# TX_CONFIG['current_max'] = np.min([current_adc_voltage_max / (TX_CONFIG['r_shunt'] * 50),
+#                                    TX_CONFIG.pop('current_max', np.inf)])  # mA
+# # TX_CONFIG['voltage_max'] = np.min([pwr_voltage_max, TX_CONFIG.pop('voltage_max', np.inf)])  # V
+# TX_CONFIG['voltage_max'] = TX_CONFIG.pop('voltage_max', np.inf)  # V
+# TX_CONFIG['voltage_min'] = -TX_CONFIG['voltage_max']  # V
+# TX_CONFIG['default_voltage'] = np.min([TX_CONFIG.pop('default_voltage', np.inf), TX_CONFIG['voltage_max']])  # V
+# # TX_CONFIG['pwr_switch_on_warm_up'] = TX_CONFIG.pop('pwr_switch_on_warmup', pwr_switch_on_warmup)
+# TX_CONFIG['mcp_board_address'] = TX_CONFIG.pop('mcp_board_address', tx_mcp_board_address)
+# TX_CONFIG['low_battery'] = TX_CONFIG.pop('low_battery', low_battery)
+# TX_CONFIG['latency'] = TX_CONFIG.pop('latency', 0.01)
+# TX_CONFIG['bias'] = TX_CONFIG.pop('bias', 0.)
+
+
+def _gain_auto(channel):
+    """Automatically sets the gain on a channel
+
+    Parameters
+    ----------
+    channel : ads.ADS1x15
+        Instance of ADS where voltage is measured.
+
+    Returns
+    -------
+    gain : float
+        Gain to be applied on ADS1115.
+    """
+
+    gain = 2 / 3
+    if (abs(channel.voltage) < 2.048) and (abs(channel.voltage) >= 1.024):
+        gain = 2
+    elif (abs(channel.voltage) < 1.024) and (abs(channel.voltage) >= 0.512):
+        gain = 4
+    elif (abs(channel.voltage) < 0.512) and (abs(channel.voltage) >= 0.256):
+        gain = 8
+    elif abs(channel.voltage) < 0.256:
+        gain = 16
+    return gain
+
+
+class Tx(TxAbstract):
+    def __init__(self, **kwargs):
+        for key in SPECS['tx'].keys():
+            kwargs = enforce_specs(kwargs, SPECS['tx'], key)
+        kwargs.update({'board_name': os.path.basename(__file__).rstrip('.py')})
+        super().__init__(**kwargs)
+        assert isinstance(self.connection, I2C)
+        kwargs.update({'pwr': kwargs.pop('pwr', SPECS['tx']['compatible_power_sources']['default'])})
+        if (kwargs['pwr'] != SPECS['tx']['compatible_power_sources']['default']
+                and kwargs['pwr'] not in SPECS['tx']['compatible_power_sources']['other']):
+            self.exec_logger.warning(f'Incompatible power source specified check config')
+            assert kwargs['pwr'] in SPECS['tx']
+        # self.pwr = None  # TODO: set a list of compatible power system with the tx
+        self.exec_logger.event(f'{self.board_name}\ttx_init\tbegin\t{datetime.datetime.utcnow()}')
+        # self.voltage_max = kwargs['voltage_max']  # TODO: check if used
+        self._activation_delay = kwargs['activation_delay']
+        self._release_delay = kwargs['release_delay']
+        self.voltage_adjustable = False
+        self.current_adjustable = False
+
+        # I2C connexion to MCP23008, for current injection
+        self.mcp_board = MCP23008(self.connection, address=0x21)
+        # ADS1115 for current measurement (AB)
+        self._ads_current_address = 0x48
+        self._ads_current_data_rate = kwargs['data_rate']
+        self._ads_current = ads.ADS1115(self.connection, gain=self.adc_gain, data_rate=self._ads_current_data_rate,
+                                        address=self._ads_current_address)
+        self._ads_current.mode = Mode.CONTINUOUS
+        self.r_shunt = kwargs['r_shunt']
+        self.adc_voltage_min = kwargs['adc_voltage_min']
+        self.adc_voltage_max = kwargs['adc_voltage_max']
+
+        # Relays for pulse polarity
+        self.pin0 = self.mcp_board.get_pin(0)
+        self.pin0.direction = Direction.OUTPUT
+        self.pin1 = self.mcp_board.get_pin(1)
+        self.pin1.direction = Direction.OUTPUT
+        self.polarity = 0
+        self.gain = 2 / 3
+
+        # Initialize LEDs
+        self.pin4 = self.mcp_board.get_pin(4)  # Ohmpi_run
+        self.pin4.direction = Direction.OUTPUT
+        self.pin4.value = True
+
+        self._latency = kwargs.pop('latency', TX_CONFIG['latency'])
+        self._bias = kwargs.pop('bias', TX_CONFIG['bias'])
+        self.exec_logger.event(f'{self.board_name}\ttx_init\tend\t{datetime.datetime.utcnow()}')
+
+    @property
+    def gain(self):
+        return self._adc_gain
+
+    @gain.setter
+    def gain(self, value):
+        assert value in [2/3, 2, 4, 8, 16]
+        self._adc_gain = value
+        self._ads_current = ads.ADS1115(self.connection, gain=self.adc_gain,
+                                        data_rate=SPECS['tx']['data_rate']['default'],
+                                        address=self._ads_current_address)
+        self._ads_current.mode = Mode.CONTINUOUS
+        self.exec_logger.debug(f'Setting TX ADC gain to {value}')
+
+    def _adc_gain_auto(self):
+        self.exec_logger.event(f'{self.board_name}\ttx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}')
+        gain = _gain_auto(AnalogIn(self._ads_current, ads.P0))
+        self.exec_logger.debug(f'Setting TX ADC gain automatically to {gain}')
+        self.gain = gain
+        self.exec_logger.event(f'{self.board_name}\ttx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}')
+
+    def current_pulse(self, **kwargs):
+        TxAbstract.current_pulse(self, **kwargs)
+        self.exec_logger.warning(f'Current pulse is not implemented for the {self.board_name} board')
+
+    @property
+    def current(self):
+        """ Gets the current IAB in Amps
+        """
+        iab = AnalogIn(self._ads_current, ads.P0).voltage * 1000. / (50 * self.r_shunt)  # measure current
+        self.exec_logger.debug(f'Reading TX current:  {iab} mA')
+        return iab
+
+    @ current.setter
+    def current(self, value):
+        assert self.adc_voltage_min / (50 * self.r_shunt)  <= value <= self.adc_voltage_max / (50 * self.r_shunt)
+        self.exec_logger.warning(f'Current pulse is not implemented for the {self.board_name} board')
+
+    def gain_auto(self):
+        self._adc_gain_auto()
+
+    def inject(self, polarity=1, injection_duration=None):
+        self.polarity = polarity
+        TxAbstract.inject(self, polarity=polarity, injection_duration=injection_duration)
+
+    @property
+    def polarity(self):
+        return self._polarity
+
+    @polarity.setter
+    def polarity(self, polarity):
+        assert polarity in [-1, 0, 1]
+        self._polarity = polarity
+        if polarity == 1:
+            self.pin0.value = True
+            self.pin1.value = False
+            time.sleep(self._activation_delay)  # Max turn on time of 211EH relays = 5ms
+        elif polarity == -1:
+            self.pin0.value = False
+            self.pin1.value = True
+            time.sleep(self._activation_delay)  # Max turn on time of 211EH relays = 5ms
+        else:
+            self.pin0.value = False
+            self.pin1.value = False
+            time.sleep(self._release_delay)  # Max turn off time of 211EH relays = 1ms
+
+    def turn_off(self):
+        self.pwr.turn_off(self)
+
+    def turn_on(self):
+        self.pwr.turn_on(self)
+
+    @property
+    def tx_bat(self):
+        self.soh_logger.warning(f'Cannot get battery voltage on {self.board_name}')
+        self.exec_logger.debug(f'{self.board_name} cannot read battery voltage. Returning default battery voltage.')
+        return self.pwr.voltage
+
+    def voltage_pulse(self, voltage=None, length=None, polarity=1):
+        """ Generates a square voltage pulse
+
+        Parameters
+        ----------
+        voltage: float, optional
+            Voltage to apply in volts, tx_v_def is applied if omitted.
+        length: float, optional
+            Length of the pulse in seconds
+        polarity: 1,0,-1
+            Polarity of the pulse
+        """
+        self.exec_logger.event(f'{self.board_name}\ttx_voltage_pulse\tbegin\t{datetime.datetime.utcnow()}')
+        # self.exec_logger.info(f'injection_duration: {length}')  # TODO: delete me
+        if length is None:
+            length = self.injection_duration
+        if voltage is not None:
+            self.pwr.voltage = voltage
+        self.exec_logger.debug(f'Voltage pulse of {polarity*self.pwr.voltage:.3f} V for {length:.3f} s')
+        self.inject(polarity=polarity, injection_duration=length)
+        self.exec_logger.event(f'{self.board_name}\ttx_voltage_pulse\tend\t{datetime.datetime.utcnow()}')
+
+
+class Rx(RxAbstract):
+    def __init__(self, **kwargs):
+        for key in SPECS['rx'].keys():
+            kwargs = enforce_specs(kwargs, SPECS['rx'], key)
+        kwargs.update({'board_name': os.path.basename(__file__).rstrip('.py')})
+        super().__init__(**kwargs)
+        assert isinstance(self.connection, I2C)
+
+        self.exec_logger.event(f'{self.board_name}\trx_init\tbegin\t{datetime.datetime.utcnow()}')
+
+        # I2C connexion to MCP23008, for DG411
+        self.mcp_board = MCP23008(self.connection, address=0x27)
+
+        # ADS1115 for voltage measurement (MN)
+        self._ads_voltage_address = 0x49
+        self._adc_gain = 2/3
+        self._ads_voltage = ads.ADS1115(self.connection, gain=self._adc_gain,
+                                        data_rate=SPECS['rx']['data_rate']['default'],
+                                        address=self._ads_voltage_address)
+        self._ads_voltage.mode = Mode.CONTINUOUS
+        self._coef_p2 = kwargs['coef_p2']
+        # self._voltage_max = kwargs['voltage_max']
+        self._sampling_rate = kwargs['sampling_rate']
+        self._bias = kwargs['bias']
+        self.exec_logger.event(f'{self.board_name}\trx_init\tend\t{datetime.datetime.utcnow()}')
+
+        self.pin_DG0 = self.mcp_board.get_pin(0)
+        self.pin_DG0.direction = Direction.OUTPUT
+        self.pin_DG1 = self.mcp_board.get_pin(1)
+        self.pin_DG1.direction = Direction.OUTPUT
+        self.pin_DG2 = self.mcp_board.get_pin(2)
+        self.pin_DG2.direction = Direction.OUTPUT
+
+        self.pin_DG0.value = True  # open
+        self.pin_DG1.value = True  # open gain 1 inactive
+        self.pin_DG2.value = False  # close gain 0.5 active
+        self._voltage_gain = 0.5
+
+    @property
+    def gain(self):
+        return self._adc_gain
+
+    @gain.setter
+    def gain(self, value):
+        assert value in [2/3, 2, 4, 8, 16]
+        self._adc_gain = value
+        self._ads_voltage = ads.ADS1115(self.connection, gain=self.adc_gain,
+                                        data_rate=SPECS['rx']['data_rate']['default'],
+                                        address=self._ads_voltage_address)
+        self._ads_voltage.mode = Mode.CONTINUOUS
+        self.exec_logger.debug(f'Setting RX ADC gain to {value}')
+
+    def _adc_gain_auto(self):
+        self.exec_logger.event(f'{self.board_name}\trx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}')
+        gain_0 = _gain_auto(AnalogIn(self._ads_voltage, ads.P0))
+        gain_2 = _gain_auto(AnalogIn(self._ads_voltage, ads.P2))
+        gain = np.min([gain_0, gain_2])
+        self.exec_logger.debug(f'Setting RX ADC gain automatically to {gain}')
+        self.gain = gain
+        self.exec_logger.event(f'{self.board_name}\trx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}')
+
+    def gain_auto(self):
+        self._adc_gain_auto()
+    @property
+    def voltage(self):
+        """ Gets the voltage VMN in Volts
+        """
+        self.exec_logger.event(f'{self.board_name}\trx_voltage\tbegin\t{datetime.datetime.utcnow()}')
+        u = -AnalogIn(self._ads_voltage, ads.P0, ads.P1).voltage * self._coef_p2 * 1000. - self._bias  # TODO: check if it should be negated
+        self.exec_logger.event(f'{self.board_name}\trx_voltage\tend\t{datetime.datetime.utcnow()}')
+        return u
+
+    @property
+    def voltage_gain(self):
+        return self._voltage_gain
+
+    @voltage_gain.setter
+    def voltage_gain(self,value):
+        assert value in [0.5, 1]
+        self._voltage_gain = value
+        if self._voltage_gain == 1:
+            self.pin_DG1.value = False  # closed gain 1 active
+            self.pin_DG2.value = True  # open gain 0.5 inactive
+        elif self._voltage_gain == 0.5:
+            self.pin_DG1.value = True  # closed gain 1 active
+            self.pin_DG2.value = False  # open gain 0.5 inactive
+
+    def voltage_gain_auto(self):
+        u = ((AnalogIn(self.ads_voltage, ads.P0).voltage * 1000) - self.vmn_hardware_offset) / self.voltage_gain
+        if abs(vmn1) < 2500 and abs(vmn2) < 2500:  ###TODO change voltage gain auto logic
+            self.voltage_gain = 1
+        else:
+            self.voltage_gain = 0.5
-- 
GitLab