diff --git a/sphinx/build/doctrees/Ohmpi.doctree b/sphinx/build/doctrees/Ohmpi.doctree index 51164e758771d5172dd0a0c701c87abe121e237b..9f269b16f0a76df9885e96152ce3dc478613274a 100644 Binary files a/sphinx/build/doctrees/Ohmpi.doctree and b/sphinx/build/doctrees/Ohmpi.doctree differ diff --git a/sphinx/build/doctrees/V1_01.doctree b/sphinx/build/doctrees/V1_01.doctree index 0f204c41a19e30f4779313ff83903801add650ef..ce6250bc6d5d0221a24916c8f4e2db0885e43006 100644 Binary files a/sphinx/build/doctrees/V1_01.doctree and b/sphinx/build/doctrees/V1_01.doctree differ diff --git a/sphinx/build/doctrees/V1_02.doctree b/sphinx/build/doctrees/V1_02.doctree index 6695c5ae4df22e2e290a9c9a1c460265cef71bcb..690471fb6864a2560d3ec25654363f8232dc87d8 100644 Binary files a/sphinx/build/doctrees/V1_02.doctree and b/sphinx/build/doctrees/V1_02.doctree differ diff --git a/sphinx/build/doctrees/V2_00.doctree b/sphinx/build/doctrees/V2_00.doctree new file mode 100644 index 0000000000000000000000000000000000000000..a02d898a179287ed671e3bdafead36409f541cbe Binary files /dev/null and b/sphinx/build/doctrees/V2_00.doctree differ diff --git a/sphinx/build/doctrees/environment.pickle b/sphinx/build/doctrees/environment.pickle index d79996cc2dc1fcce2c891e9786bfff6d78d3ff02..65268571e863d9342ee0fa784eac3fd30692c878 100644 Binary files a/sphinx/build/doctrees/environment.pickle and b/sphinx/build/doctrees/environment.pickle differ diff --git a/sphinx/build/doctrees/index.doctree b/sphinx/build/doctrees/index.doctree index cb401db703a6d6d80bebbf97698f89143bf15a97..1dbf9eed5986dabb16eb28ade9fa696f93d88e65 100644 Binary files a/sphinx/build/doctrees/index.doctree and b/sphinx/build/doctrees/index.doctree differ diff --git a/sphinx/build/html/Ohmpi.html b/sphinx/build/html/Ohmpi.html index 4efb23ca3d4bc504cd65d567a6565eb8cc5e17b1..2d545ab64d3484573bc1e5b68a4794fe0858ff8a 100644 --- a/sphinx/build/html/Ohmpi.html +++ b/sphinx/build/html/Ohmpi.html @@ -4,7 +4,8 @@ <html class="writer-html5" lang="en" > <head> <meta charset="utf-8"> - + <meta name="generator" content="Docutils 0.17: http://docutils.sourceforge.net/" /> + <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>OhmPi project — Ohmpi: open hardware resistivity-meter documentation</title> @@ -94,6 +95,7 @@ </li> <li class="toctree-l1"><a class="reference internal" href="V1_01.html">OhmPi V 1.01 (limited to 32 electrodes)</a></li> <li class="toctree-l1"><a class="reference internal" href="V1_02.html">OhmPi V 1.02 (limited to 32 electrodes)</a></li> +<li class="toctree-l1"><a class="reference internal" href="V2_00.html">OhmPi V 2.00 (64 or 128 électrodes)</a></li> </ul> @@ -159,9 +161,9 @@ <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> <div itemprop="articleBody"> - <div class="section" id="ohmpi-project"> + <section id="ohmpi-project"> <h1>OhmPi project<a class="headerlink" href="#ohmpi-project" title="Permalink to this headline">¶</a></h1> -<div class="section" id="partenaires"> +<section id="partenaires"> <h2><strong>Partenaires</strong><a class="headerlink" href="#partenaires" title="Permalink to this headline">¶</a></h2> <a class="reference internal image-reference" href="_images/logo_ohmpi.JPG"><img alt="Logo OhmPi" class="align-center" src="_images/logo_ohmpi.JPG" style="width: 350px; height: 250px;" /></a> <p>Authors:</p> @@ -194,13 +196,13 @@ <p>Creation date : Juillet 2020.</p> <p>Update : 21 août 2020.</p> <p>Status of document: In progress.</p> -<div class="section" id="citing-ohmpi"> +<section id="citing-ohmpi"> <h3><strong>Citing OhmPi</strong><a class="headerlink" href="#citing-ohmpi" title="Permalink to this headline">¶</a></h3> <p><em>Rémi Clement, Yannick Fargier, Vivien Dubois, Julien Gance, Emile Gros, et al.. OhmPi: An open</em> <em>source data logger for dedicated applications of electrical resistivity imaging at the small and laboratory</em> <em>scale. HardwareX, Elsevier, 2020, 8, 24 p. ff10.1016/j.ohx.2020.e00122ff.</em></p> -</div> -<div class="section" id="introduction-to-ohmpi"> +</section> +<section id="introduction-to-ohmpi"> <h3><strong>Introduction to OhmPi</strong><a class="headerlink" href="#introduction-to-ohmpi" title="Permalink to this headline">¶</a></h3> <p>This documentation presents the development of a low-cost, open hardware resistivity meter to provide the scientific community with a robust and flexible tool for small-scale experiments. Called OhmPi, this basic resistivity meterfeatures current injection and measurement functions associated with a multiplexer that allows performing automatic measurements with up to 32 electrodes.OhmPi’s philosophy is to provide a fully open source and open hardware tool / to the near surface scientific community.</p> @@ -208,9 +210,9 @@ to the near surface scientific community.</p> <p class="admonition-title">Note</p> <p>Everyone willing to get involved is welcome in OhmPi Project!.</p> </div> -</div> -</div> -</div> +</section> +</section> +</section> </div> diff --git a/sphinx/build/html/V1_01.html b/sphinx/build/html/V1_01.html index d7df85db1ca68819766e510a7cf83526c9950235..d44794b355438212a0732791cae6db93f5afdb76 100644 --- a/sphinx/build/html/V1_01.html +++ b/sphinx/build/html/V1_01.html @@ -4,7 +4,8 @@ <html class="writer-html5" lang="en" > <head> <meta charset="utf-8"> - + <meta name="generator" content="Docutils 0.17: http://docutils.sourceforge.net/" /> + <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>OhmPi V 1.01 (limited to 32 electrodes) — Ohmpi: open hardware resistivity-meter documentation</title> @@ -116,6 +117,7 @@ </ul> </li> <li class="toctree-l1"><a class="reference internal" href="V1_02.html">OhmPi V 1.02 (limited to 32 electrodes)</a></li> +<li class="toctree-l1"><a class="reference internal" href="V2_00.html">OhmPi V 2.00 (64 or 128 électrodes)</a></li> </ul> @@ -181,21 +183,21 @@ <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> <div itemprop="articleBody"> - <div class="section" id="ohmpi-v-1-01-limited-to-32-electrodes"> + <section id="ohmpi-v-1-01-limited-to-32-electrodes"> <h1>OhmPi V 1.01 (limited to 32 electrodes)<a class="headerlink" href="#ohmpi-v-1-01-limited-to-32-electrodes" title="Permalink to this headline">¶</a></h1> <div class="admonition warning"> <p class="admonition-title">Warning</p> <p>This version corresponds to the version published in the Hardware X journal. However, we have corrected the bugs that existed on this version and explained the missing mounting points in detail below. -We invite you to refer to this document to assemble Ohmpi.</p> +We invite you to refer to this document to assemble Ohmpi V1.01.</p> </div> -<div class="section" id="the-philosophy-of-ohmpi"> +<section id="the-philosophy-of-ohmpi"> <h2>The philosophy of Ohmpi<a class="headerlink" href="#the-philosophy-of-ohmpi" title="Permalink to this headline">¶</a></h2> <p>The philosophy of Ohmpi V1.01 is to offer a multi electrode resistivity meter, from a set of commercially available electronic cards it is a resistivity meter limited to 32 electrodes only. It is limited to low-current injection, but suitable for small laboratory experiments and small field time monitoring</p> -</div> -<div class="section" id="technical-data"> +</section> +<section id="technical-data"> <h2>Technical data<a class="headerlink" href="#technical-data" title="Permalink to this headline">¶</a></h2> <table class="docutils align-default"> <colgroup> @@ -251,10 +253,10 @@ control system</p></td> </tr> </tbody> </table> -</div> -<div class="section" id="raspberry-pi-configuration"> +</section> +<section id="raspberry-pi-configuration"> <h2>Raspberry Pi configuration<a class="headerlink" href="#raspberry-pi-configuration" title="Permalink to this headline">¶</a></h2> -<div class="section" id="os-installation"> +<section id="os-installation"> <h3>OS installation<a class="headerlink" href="#os-installation" title="Permalink to this headline">¶</a></h3> <p>The first step is to start up the Raspberry Pi board, including installation of an OS (operating system). For this step, the installation instructions are well described on the Raspberry website</p> @@ -265,9 +267,9 @@ For this step, the installation instructions are well described on the Raspberry <div class="admonition note"> <p class="admonition-title">Note</p> <p>All the development tests were performed on Raspberry Pi 3 Model B, we used the following version of Raspbian:</p> -<div class="align-center figure"> +<figure class="align-center"> <a class="reference internal image-reference" href="_images/raspbian_version.jpg"><img alt="alternate text" src="_images/raspbian_version.jpg" style="width: 800px; height: 400px;" /></a> -</div> +</figure> </div> <div class="admonition warning"> <p class="admonition-title">Warning</p> @@ -303,8 +305,8 @@ To ensure that the GPIOs are in Low position, you will need to modify the /boot/ <li><p>Press Ctrl +x to escap and return to the terminal</p></li> <li><p>Close the terminal</p></li> </ol> -</div> -<div class="section" id="virtual-environnement-and-packages"> +</section> +<section id="virtual-environnement-and-packages"> <h3>Virtual Environnement and packages<a class="headerlink" href="#virtual-environnement-and-packages" title="Permalink to this headline">¶</a></h3> <p>All dependencies are specified in requirements.txt</p> <div class="admonition note"> @@ -337,38 +339,38 @@ to leave the virtual environment simply type:</p> <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">deactivate</span> </pre></div> </div> -</div> -<div class="section" id="activate-virtual-environnement-on-thonny-python-ide-on-rapberry-pi"> +</section> +<section id="activate-virtual-environnement-on-thonny-python-ide-on-rapberry-pi"> <h3>Activate virtual environnement on Thonny (Python IDE) (on Rapberry Pi)<a class="headerlink" href="#activate-virtual-environnement-on-thonny-python-ide-on-rapberry-pi" title="Permalink to this headline">¶</a></h3> <p>If you decided to use a virtual environment, it is necessary to setup Thonny Python IDE the first time you use it.</p> <p>1- Run the Thonny Python IDE software, Click on raspebrry acces <strong>menu > programming> Thonny pythonIDE</strong></p> <p>2- Thonny’s interface opens, Python runs on the Root (Python 3.7.3 (/usr/bin/python3))</p> -<div class="align-center figure"> +<figure class="align-center"> <a class="reference internal image-reference" href="_images/thonny_first_interface.jpg"><img alt="alternate text" src="_images/thonny_first_interface.jpg" style="width: 600px; height: 450px;" /></a> -</div> +</figure> <p>3-Click on <strong>Run>select interpreter</strong>, a new window opens click on interpret</p> -<div class="align-center figure"> +<figure class="align-center"> <a class="reference internal image-reference" href="_images/thonny_option.jpg"><img alt="alternate text" src="_images/thonny_option.jpg" style="width: 600px; height: 450px;" /></a> -</div> +</figure> <p>4-On the new open windows select <strong>alternative Pyhton3 or virtual environnement</strong></p> -<div class="align-center figure"> +<figure class="align-center"> <a class="reference internal image-reference" href="_images/thonny_interpreter.jpg"><img alt="alternate text" src="_images/thonny_interpreter.jpg" style="width: 600px; height: 450px;" /></a> -</div> +</figure> <p>5- New buttons appeared, selected <strong>“locate another python executable “</strong></p> <p>6- A new window opens, find the folder where there is the python 3 file in the virtual environment folder previously created <strong>/home/pi/ohmpi/bin/python3</strong>.</p> <p>7- In the <strong>known interpreter</strong> tab the path of the virtual environnementshould appear</p> -<div class="align-center figure"> +<figure class="align-center"> <a class="reference internal image-reference" href="_images/thonny_interpreter_folder.jpg"><img alt="alternate text" src="_images/thonny_interpreter_folder.jpg" style="width: 600px; height: 450px;" /></a> -</div> +</figure> <p>8- Close the window by clicking on <strong>ok</strong>.</p> <p>9- Close thonny to save modifications</p> -</div> -</div> -<div class="section" id="assembly-of-the-measuring-current-injection-cards-and-connection-with-the-raspberry-pi"> +</section> +</section> +<section id="assembly-of-the-measuring-current-injection-cards-and-connection-with-the-raspberry-pi"> <h2>Assembly of the measuring/current injection cards, and connection with the Raspberry Pi<a class="headerlink" href="#assembly-of-the-measuring-current-injection-cards-and-connection-with-the-raspberry-pi" title="Permalink to this headline">¶</a></h2> -<div class="section" id="electrical-resistivity-measurements-board"> +<section id="electrical-resistivity-measurements-board"> <h3>Electrical resistivity measurements board<a class="headerlink" href="#electrical-resistivity-measurements-board" title="Permalink to this headline">¶</a></h3> -<div class="section" id="a-description"> +<section id="a-description"> <h4>a) Description<a class="headerlink" href="#a-description" title="Permalink to this headline">¶</a></h4> <p>To measure electrical resistivity with Raspberry Pi, an ADS1115 was introduced, as proposed by Florsch [7]. The ADS1115 is a 16-bit ADC (Analog-to-Digital Converter), with an adaptable gain. Its value has been set at 2/3 in this study. The @@ -401,12 +403,14 @@ electric field in the ground, with the total input impedance value being estimat A shortcut between Electrodes A and B will generate excessive currents, whose intensities depend on the type of battery used. A lithium ion battery or automobile-type lead-acid battery can deliver a strong enough current to damage the board and, as such, constitutes a potential hazard. We therefore recommend adding a 1.5-A fuse between the battery and resistor R9.</p> -<div class="align-center figure" id="id1"> +<figure class="align-center" id="id1"> <a class="reference internal image-reference" href="_images/schema_measurement_board.jpg"><img alt="alternate text" src="_images/schema_measurement_board.jpg" style="width: 800px; height: 400px;" /></a> -<p class="caption"><span class="caption-text">Measurement board</span><a class="headerlink" href="#id1" title="Permalink to this image">¶</a></p> -</div> -</div> -<div class="section" id="b-implementation"> +<figcaption> +<p><span class="caption-text">Measurement board</span><a class="headerlink" href="#id1" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +</section> +<section id="b-implementation"> <h4>b) Implementation<a class="headerlink" href="#b-implementation" title="Permalink to this headline">¶</a></h4> <p>The measurement board must be printed using the PCB file (Source file repository), with components soldered onto it by following the steps described below and illustrated in the following figure :</p> @@ -422,14 +426,14 @@ it by following the steps described below and illustrated in the following figur \[coeff p2 = (R7 + R6) / R7\]</div> <div class="math notranslate nohighlight"> \[coeff p3 = (R9 + R8) / R9\]</div> -<div class="highlight-python notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre>36 -37 -38 -39 -40 -41 -42 -43</pre></div></td><td class="code"><div class="highlight"><pre><span></span> <span class="sd">"""</span> +<div class="highlight-python notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre><span class="normal">36</span> +<span class="normal">37</span> +<span class="normal">38</span> +<span class="normal">39</span> +<span class="normal">40</span> +<span class="normal">41</span> +<span class="normal">42</span> +<span class="normal">43</span></pre></div></td><td class="code"><div class="highlight"><pre><span></span> <span class="sd">"""</span> <span class="sd"> hardware parameters</span> <span class="sd"> """</span> <span class="n">R_ref</span> <span class="o">=</span> <span class="mi">50</span> <span class="c1"># reference resistance value in ohm</span> @@ -455,17 +459,21 @@ or stronger power supply, it would be possible to adjust the divider bridge valu Once all the components have been soldered together, the measurement board can be connected to the Raspberry Pi and the battery terminal, according to Figure 9. Between the battery and the TX+ terminal of the measurement board, remember to place a fuse holder with a 1.5-A fuse for safety purposes.</p> -<div class="align-center figure" id="id2"> +<figure class="align-center" id="id2"> <a class="reference internal image-reference" href="_images/measurement_board.jpg"><img alt="alternate text" src="_images/measurement_board.jpg" style="width: 800px; height: 500px;" /></a> -<p class="caption"><span class="caption-text">Measurement circuit board assembly: a) printed circuit board, b) adding the 1-Kohm resistors ± 1%, c)adding the 1.5-Kohm resistors ± 1%, d) adding the black female 1 x 10 header and the 7-blue screw terminal block(2 pin, 3.5-mm pitch), e) adding the 50-ohm reference resistor ± 0.1%, and f) adding the ADS1115 and the LM358N low-power dual operational amplifiers</span><a class="headerlink" href="#id2" title="Permalink to this image">¶</a></p> -</div> -<div class="align-center figure" id="id3"> +<figcaption> +<p><span class="caption-text">Measurement circuit board assembly: a) printed circuit board, b) adding the 1-Kohm resistors ± 1%, c)adding the 1.5-Kohm resistors ± 1%, d) adding the black female 1 x 10 header and the 7-blue screw terminal block(2 pin, 3.5-mm pitch), e) adding the 50-ohm reference resistor ± 0.1%, and f) adding the ADS1115 and the LM358N low-power dual operational amplifiers</span><a class="headerlink" href="#id2" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +<figure class="align-center" id="id3"> <a class="reference internal image-reference" href="_images/measurement_board-2.jpg"><img alt="alternate text" src="_images/measurement_board-2.jpg" style="width: 800px; height: 700px;" /></a> -<p class="caption"><span class="caption-text">Measurement board installation with Raspberry Pi</span><a class="headerlink" href="#id3" title="Permalink to this image">¶</a></p> -</div> -</div> -</div> -<div class="section" id="current-injection-board"> +<figcaption> +<p><span class="caption-text">Measurement board installation with Raspberry Pi</span><a class="headerlink" href="#id3" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +</section> +</section> +<section id="current-injection-board"> <h3>Current injection board<a class="headerlink" href="#current-injection-board" title="Permalink to this headline">¶</a></h3> <p>To carry out the electrical resistivity measurement, the first step consists of injecting current into the ground. In our case, a simple 9-V lead-acid battery is used to create an electrical potential difference that results @@ -478,10 +486,12 @@ to the GPIO 7 on the Raspberry Pi and therefore activate simultaneously. The rol the polarity at electrodes A and B. Thus, when relays 3 and 4 are energized by the GPIO 8 in the open position, the positive battery pole is connected to electrode A and the negative pole to electrode B. When not energized, they remain in the normally closed position. This set-up offers a simple and robust solution to inject current.</p> -<div class="align-center figure" id="id4"> +<figure class="align-center" id="id4"> <a class="reference internal image-reference" href="_images/current_board.jpg"><img alt="alternate text" src="_images/current_board.jpg" style="width: 800px; height: 400px;" /></a> -<p class="caption"><span class="caption-text">Wiring of the 4-channel relay module board for current injection management</span><a class="headerlink" href="#id4" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Wiring of the 4-channel relay module board for current injection management</span><a class="headerlink" href="#id4" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <p>The next step consists of featuring the 4-channel relay module used for current injection and its assembly. The wiring between the relays must be carried out in strict accordance with Fig. 10. This card must then be connected to the Raspberry Pi and the measurement card. On the Raspberry Pi, it is necessary to connect inputs In1 and In2 to the same GPIO. For this @@ -489,20 +499,22 @@ purpose, it is necessary to solder together the two pins on the 4-channel relay the relay card’s 4 channels respectively to the GND pin and 5Vcc of the Raspberry Pi. Now connect relays 1, 2, 3 and 4, as shown in the diagram, using 1-mm2 cables (red and black in Fig. 10). Lastly, connect the inputs of relay 1 and 2 respectively to terminals B and A of the measurement board.</p> -<div class="align-center figure" id="id5"> +<figure class="align-center" id="id5"> <a class="reference internal image-reference" href="_images/installation_current_board.jpg"><img alt="alternate text" src="_images/installation_current_board.jpg" style="width: 800px; height: 700px;" /></a> -<p class="caption"><span class="caption-text">Current injection board installation with Raspberry Pi</span><a class="headerlink" href="#id5" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Current injection board installation with Raspberry Pi</span><a class="headerlink" href="#id5" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <p>Congratulations, you have build a 4 electrodes resistivity-meter.</p> -</div> -<div class="section" id="frist-four-electrodes-resistivity-mesurement"> +</section> +<section id="frist-four-electrodes-resistivity-mesurement"> <h3>Frist four electrodes resistivity mesurement<a class="headerlink" href="#frist-four-electrodes-resistivity-mesurement" title="Permalink to this headline">¶</a></h3> <p>Under construction !</p> <p>Describe the way to valide the first part of the instruction. Electrical resistivity measurement on test circuit</p> -</div> -</div> -<div class="section" id="multiplexer-implentation"> +</section> +</section> +<section id="multiplexer-implentation"> <h2>Multiplexer implentation<a class="headerlink" href="#multiplexer-implentation" title="Permalink to this headline">¶</a></h2> <p>The resistivity measurement is conducted on four terminals (A, B, M and N). The user could perform each measurement by manually plugging four electrodes into the four channel terminals. In practice, ERT requires several tens or thousands @@ -513,10 +525,12 @@ modules with 16 channels each. On the first board, on each MUX, 15 relays out of configuration enables making smaller multiplexers (8 or 16 electrodes only). On the other hand, if you prefer upping to 64 electrodes, which is entirely possible, a GPIO channel multiplier will have to be used. To prepare the multiplexer, the channels of the two relay boards must be connected according to the wiring diagram shown below.</p> -<div class="align-center figure" id="id6"> +<figure class="align-center" id="id6"> <a class="reference internal image-reference" href="_images/multiplexer_implementation.jpg"><img alt="alternate text" src="_images/multiplexer_implementation.jpg" style="width: 800px; height: 500px;" /></a> -<p class="caption"><span class="caption-text">Schematic diagram of the wiring of two 16-channel relay shields</span><a class="headerlink" href="#id6" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Schematic diagram of the wiring of two 16-channel relay shields</span><a class="headerlink" href="#id6" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <p>For this purpose, 0.5-mm² cables with end caps are used and their length adjusted for each connection in order to produce a clean assembly. The length was adjusted so that the distance between the two points to be connected could be directly measured on the board once they had been assembled one above the other, in adding an extra 3 cm. The wires at the ends need to be stripped and the end caps added. @@ -525,10 +539,12 @@ As a final step, connect the cables to the correct connectors. This operation mu for activating each relay (Fig. 12). However, we will be activating several relays with a single GPIO (to limit the number of GPIOs used on Raspberry Pi, see Section 2.4). To execute this step, it will be necessary to follow the protocol presented in Figure.</p> <blockquote> -<div><div class="align-center figure" id="id7"> +<div><figure class="align-center" id="id7"> <a class="reference internal image-reference" href="_images/connection.jpg"><img alt="alternate text" src="_images/connection.jpg" style="width: 800px; height: 400px;" /></a> -<p class="caption"><span class="caption-text">Connection to the 16-channel relay shield</span><a class="headerlink" href="#id7" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Connection to the 16-channel relay shield</span><a class="headerlink" href="#id7" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> </div></blockquote> <p>For the 16-channel relay shield no. 1, these steps must be followed: * Position a test circuit with 10 horizontal and 10 vertical holes on the pins of the 16-channel relay shield board. @@ -590,39 +606,43 @@ The next step consists of connecting the relay card inputs to the Raspberry Pi a <blockquote> <div><p>Connection of the GPIOs to each multiplexer</p> </div></blockquote> -</div> -<div class="section" id="electrode-connection"> +</section> +<section id="electrode-connection"> <h2>Electrode connection<a class="headerlink" href="#electrode-connection" title="Permalink to this headline">¶</a></h2> <p>At this point, all that remains is to connect the electrodes of each multiplexer to a terminal block (Fig. 13). In our set-up, screw terminals assembled on a din rail were used. According to the chosen multiplexer configuration, all the relays of each multiplexer will be connected to an electrode and, consequently, each electrode will have four incoming connections. Instead of having four cables connecting an electrode terminal to each multiplexer, we recommend using the cable assembly shown in the following Figure.</p> -<div class="align-center figure" id="id8"> +<figure class="align-center" id="id8"> <a class="reference internal image-reference" href="_images/cable.jpg"><img alt="alternate text" src="_images/cable.jpg" style="width: 800px; height: 300px;" /></a> -<p class="caption"><span class="caption-text">Wire cabling for multiplexer and terminal screw connection</span><a class="headerlink" href="#id8" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Wire cabling for multiplexer and terminal screw connection</span><a class="headerlink" href="#id8" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <p>the next figure provides an example of multiplexer relay connections for electrode no. 1: this electrode of multiplexer MUX A must be connected to electrode no. 1 of MUX B. Moreover, electrode no. 1 of MUX B must be connected to electrode no. 1 of MUX N, which in turn must be connected to electrode no. 1 of MUX M. Lastly, electrode no. 1 of MUX M is connected to the terminal block. This operation must be repeated for all 32 electrodes.</p> -<div class="align-center figure" id="id9"> +<figure class="align-center" id="id9"> <a class="reference internal image-reference" href="_images/electrode_cable.jpg"><img alt="alternate text" src="_images/electrode_cable.jpg" style="width: 800px; height: 800px;" /></a> -<p class="caption"><span class="caption-text">Example of a multiplexer connection to the screw terminal for electrode no. 1.</span><a class="headerlink" href="#id9" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Example of a multiplexer connection to the screw terminal for electrode no. 1.</span><a class="headerlink" href="#id9" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <div class="admonition warning"> <p class="admonition-title">Warning</p> <p>The 16 channel relay cards exist in 5-V and 12-V , in the bottom figure we have 12-V cards that we will directly connect to the battery. In case you bought 16 channel relay 5-V cards, you will need to add a DC/DC 12-V/5-V converter. You can use a STEP DOWN MODULE DC-DC (Velleman WPM404) and set the voltage to 5V with the potentiometer.</p> </div> -</div> -<div class="section" id="operating-instruction"> +</section> +<section id="operating-instruction"> <h2>Operating instruction<a class="headerlink" href="#operating-instruction" title="Permalink to this headline">¶</a></h2> -<div class="section" id="preliminary-procedure-only-for-the-initial-operation"> +<section id="preliminary-procedure-only-for-the-initial-operation"> <h3>Preliminary procedure (Only for the initial operation)<a class="headerlink" href="#preliminary-procedure-only-for-the-initial-operation" title="Permalink to this headline">¶</a></h3> <p>The open source code must be downloaded at the Open Science Framework source file repository for this manuscript (<a class="reference external" href="https://osf.io/dzwb4/">https://osf.io/dzwb4/</a>) or at the following Gitlab repository address: <a class="reference external" href="https://gitlab.irstea.fr/reversaal/OhmPi">https://gitlab.irstea.fr/reversaal/OhmPi</a>. The code must be then unzipped into a selected folder (e.g. OhmPi-master). A “readme†file is proposed in the directory to assist with installation of the software and required python packages. It is strongly recommended to create a python virtual environment for installing the required packages and running the code.</p> -</div> -<div class="section" id="startup-procedure"> +</section> +<section id="startup-procedure"> <h3>Startup procedure<a class="headerlink" href="#startup-procedure" title="Permalink to this headline">¶</a></h3> <p>As an initial operating instruction, all batteries must be disconnected before any hardware handling. Ensure that the battery is charged at full capacity. Plug all the electrodes (32 or fewer) into the screw terminals. The Raspberry Pi must be plugged into a computer screen, with a mouse and keyboard accessed remotely. The Raspberry Pi must then be plugged into the power supply @@ -632,17 +652,17 @@ function may be adjusted/optimized depending on the measurement attributes. For plugged into the hardware; the “ohmpi.py†source code must be run within a python3 environment (or a virtual environment if one has been created) either in the terminal or using Thonny. You should now hear the characteristic sound of a relay switching as a result of electrode permutation. After each quadrupole measurement, the potential difference as well as the current intensity and resistance are displayed on the screen. A measurement file is automatically created and named “measure.csvâ€; it will be placed in the same folder.</p> -</div> -<div class="section" id="electrical-resistivity-measurement-parameters-description"> +</section> +<section id="electrical-resistivity-measurement-parameters-description"> <h3>Electrical resistivity measurement parameters description<a class="headerlink" href="#electrical-resistivity-measurement-parameters-description" title="Permalink to this headline">¶</a></h3> -<div class="highlight-python notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre>27 -28 -29 -30 -31 -32 -33 -34</pre></div></td><td class="code"><div class="highlight"><pre><span></span> <span class="sd">"""</span> +<div class="highlight-python notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre><span class="normal">27</span> +<span class="normal">28</span> +<span class="normal">29</span> +<span class="normal">30</span> +<span class="normal">31</span> +<span class="normal">32</span> +<span class="normal">33</span> +<span class="normal">34</span></pre></div></td><td class="code"><div class="highlight"><pre><span></span> <span class="sd">"""</span> <span class="sd"> measurement parameters</span> <span class="sd"> """</span> <span class="n">nb_electrodes</span> <span class="o">=</span> <span class="mi">32</span> <span class="c1"># maximum number of electrodes on the resistivity meter</span> @@ -653,178 +673,16 @@ are displayed on the screen. A measurement file is automatically created and nam </pre></div> </td></tr></table></div> <p>The measurement parameters can be adjusted in lines 27 to 30 of the ohmpi.py code.</p> -</div> -</div> -<div class="section" id="complete-list-of-components"> +</section> +</section> +<section id="complete-list-of-components"> <h2>Complete list of components<a class="headerlink" href="#complete-list-of-components" title="Permalink to this headline">¶</a></h2> <div class="admonition warning"> <p class="admonition-title">Warning</p> <p>The list evolve a little bit after the publication of the article, it is necessary to refer to this list, the article is out of date</p> </div> -<table class="colwidths-given docutils align-default" id="id10"> -<caption><span class="caption-text">Table Title</span><a class="headerlink" href="#id10" title="Permalink to this table">¶</a></caption> -<colgroup> -<col style="width: 8%" /> -<col style="width: 18%" /> -<col style="width: 18%" /> -<col style="width: 18%" /> -<col style="width: 18%" /> -<col style="width: 18%" /> -</colgroup> -<thead> -<tr class="row-odd"><th class="head"><p>Component</p></th> -<th class="head"><p>Number</p></th> -<th class="head"><p>Cost per unit</p></th> -<th class="head"><p>Total cost</p></th> -<th class="head"><p>Manufacturer</p></th> -<th class="head"><p>Manufacturer s reference</p></th> -</tr> -</thead> -<tbody> -<tr class="row-even"><td><p>Raspberry Pi 3 Model B+</p></td> -<td><p>1</p></td> -<td><p>37</p></td> -<td><p>37</p></td> -<td><p>Raspberry</p></td> -<td><p>Raspberry Pi 3 Model B</p></td> -</tr> -<tr class="row-odd"><td><p>Raspberry Pi 1 2 and 3 Power Supply</p></td> -<td><p>1</p></td> -<td><p>8.37</p></td> -<td><p>8.37</p></td> -<td><p>Raspberry</p></td> -<td><p>Raspberry Pi 1 2 and 3 Power Supply</p></td> -</tr> -<tr class="row-even"><td><p>SainSmart 16-Channel Canal 12V Relay Relais Module pour Arduino DSP AVR PIC ARM</p></td> -<td><p>8</p></td> -<td><p>24.99</p></td> -<td><p>199.92</p></td> -<td><p>Sain Smart</p></td> -<td><p>101-70-103</p></td> -</tr> -<tr class="row-odd"><td><p>4-Channel 5V Relay Module</p></td> -<td><p>1</p></td> -<td><p>7.99</p></td> -<td><p>7.99</p></td> -<td><p>Sain Smart</p></td> -<td><p>20-018-101-CMS</p></td> -</tr> -<tr class="row-even"><td><p>cable 1X1 mm2 (50 m)</p></td> -<td><p>1</p></td> -<td><p>19.66</p></td> -<td><p>19.66</p></td> -<td><p>TRU COMPONENTS</p></td> -<td><p>1568649</p></td> -</tr> -<tr class="row-odd"><td><p>cable 1X0.5 mm2 (100 m)</p></td> -<td><p>1</p></td> -<td><p>29.71</p></td> -<td><p>29.71</p></td> -<td><p>TRU COMPONENTS</p></td> -<td><p>1565235</p></td> -</tr> -<tr class="row-even"><td><p>Printed circuit board (packaging quantity x 3)</p></td> -<td><p>1</p></td> -<td><p>12</p></td> -<td><p>12</p></td> -<td><p>Asler</p></td> -<td><p>0</p></td> -</tr> -<tr class="row-odd"><td><p>Header sets 1x10</p></td> -<td><p>1</p></td> -<td><p>2.68</p></td> -<td><p>2.68</p></td> -<td><p>Samtec</p></td> -<td><p>SSW-110-02-G-S</p></td> -</tr> -<tr class="row-even"><td><p>Dual screw terminal (3.5-mm pitch)</p></td> -<td><p>7</p></td> -<td><p>0.648</p></td> -<td><p>4.55</p></td> -<td><p>RS PRO</p></td> -<td><p>897-1332</p></td> -</tr> -<tr class="row-odd"><td><p>Resistor 1 Kohm 0.5W +- 0.1%</p></td> -<td><p>4</p></td> -<td><p>0.858</p></td> -<td><p>3.44</p></td> -<td><p>TE Connectivity</p></td> -<td><p>H81K0BYA</p></td> -</tr> -<tr class="row-even"><td><p>Resistor 1.5 Kohms +- 0.1%</p></td> -<td><p>4</p></td> -<td><p>0.627</p></td> -<td><p>2.52</p></td> -<td><p>TE Connectivity</p></td> -<td><p>H81K5BYA</p></td> -</tr> -<tr class="row-odd"><td><p>Resistor 50 +- 0.1%</p></td> -<td><p>1</p></td> -<td><p>8.7</p></td> -<td><p>8.7</p></td> -<td><p>TE Connectivity</p></td> -<td><p>UPW50B50RV</p></td> -</tr> -<tr class="row-even"><td><p>LM358N AMP-o</p></td> -<td><p>4</p></td> -<td><p>0.8</p></td> -<td><p>2.4</p></td> -<td><p>Texas Instruments</p></td> -<td><p>LM358AN/NOPB</p></td> -</tr> -<tr class="row-odd"><td><p>ADS1115</p></td> -<td><p>1</p></td> -<td><p>11.9</p></td> -<td><p>11.9</p></td> -<td><p>Adafruit</p></td> -<td><p>1083</p></td> -</tr> -<tr class="row-even"><td><p>12V battery 7ah</p></td> -<td><p>1</p></td> -<td><p>19.58</p></td> -<td><p>19.58</p></td> -<td><p>RS PRO</p></td> -<td><p>537-5488</p></td> -</tr> -<tr class="row-odd"><td><p>Battery Holder Type D LR20 (9V)</p></td> -<td><p>1</p></td> -<td><p>3.43</p></td> -<td><p>3.43</p></td> -<td><p>RS PRO</p></td> -<td><p>185-4686</p></td> -</tr> -<tr class="row-even"><td><p>Ferrule Crimp Terminal (1 mm2) (500 pieces)</p></td> -<td><p>1</p></td> -<td><p>30.48</p></td> -<td><p>30.48</p></td> -<td><p>WEIDMULLER</p></td> -<td><p>9004330000</p></td> -</tr> -<tr class="row-odd"><td><p>Electrical Crimp Terminal (0.5 mm2) (100 piece)</p></td> -<td><p>1</p></td> -<td><p>6.38</p></td> -<td><p>6.38</p></td> -<td><p>AMP - TE CONNECTIVITY</p></td> -<td><p>966067-1</p></td> -</tr> -<tr class="row-even"><td><p>Car Fuse 1.0 A</p></td> -<td><p>1</p></td> -<td><p>0.2</p></td> -<td></td> -<td><p>LITTELFUSE</p></td> -<td><p>LITTELFUSE</p></td> -</tr> -<tr class="row-odd"><td><p>Fuse holder (576-FHAC0002ZXJ)</p></td> -<td><p>1</p></td> -<td><p>4.96</p></td> -<td><p>4.96</p></td> -<td><p>LITTELFUSE</p></td> -<td><p>FHAC0002ZXJ</p></td> -</tr> -</tbody> -</table> -</div> -</div> +</section> +</section> </div> diff --git a/sphinx/build/html/V1_02.html b/sphinx/build/html/V1_02.html index 69f5cc21c795fbb42e94ea8671f63d7ed3070b39..23946db46cf4193f5074eb06853849a4f724c930 100644 --- a/sphinx/build/html/V1_02.html +++ b/sphinx/build/html/V1_02.html @@ -4,7 +4,8 @@ <html class="writer-html5" lang="en" > <head> <meta charset="utf-8"> - + <meta name="generator" content="Docutils 0.17: http://docutils.sourceforge.net/" /> + <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>OhmPi V 1.02 (limited to 32 electrodes) — Ohmpi: open hardware resistivity-meter documentation</title> @@ -37,6 +38,7 @@ <link rel="index" title="Index" href="genindex.html" /> <link rel="search" title="Search" href="search.html" /> + <link rel="next" title="OhmPi V 2.00 (64 or 128 électrodes)" href="V2_00.html" /> <link rel="prev" title="OhmPi V 1.01 (limited to 32 electrodes)" href="V1_01.html" /> </head> @@ -115,6 +117,7 @@ <li class="toctree-l2"><a class="reference internal" href="#complete-list-of-components">Complete list of components</a></li> </ul> </li> +<li class="toctree-l1"><a class="reference internal" href="V2_00.html">OhmPi V 2.00 (64 or 128 électrodes)</a></li> </ul> @@ -180,19 +183,19 @@ <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> <div itemprop="articleBody"> - <div class="section" id="ohmpi-v-1-02-limited-to-32-electrodes"> + <section id="ohmpi-v-1-02-limited-to-32-electrodes"> <h1>OhmPi V 1.02 (limited to 32 electrodes)<a class="headerlink" href="#ohmpi-v-1-02-limited-to-32-electrodes" title="Permalink to this headline">¶</a></h1> <div class="admonition note"> <p class="admonition-title">Note</p> <p>In this version, we have improved the electronic measurement board. To upgrade from version 1.01 to 1.02, you just have to replace the measurement board by the new one proposed here.</p> </div> -<div class="section" id="the-philosophy-of-ohmpi"> +<section id="the-philosophy-of-ohmpi"> <h2>The philosophy of Ohmpi<a class="headerlink" href="#the-philosophy-of-ohmpi" title="Permalink to this headline">¶</a></h2> <p>The philosophy of Ohmpi V1.01 is to offer a multi electrode resistivity meter, from a set of commercially available electronic cards it is a resistivity meter limited to 32 electrodes only. It is limited to low-current injection, but suitable for small laboratory experiments and small field time monitoring</p> -</div> -<div class="section" id="technical-data"> +</section> +<section id="technical-data"> <h2>Technical data<a class="headerlink" href="#technical-data" title="Permalink to this headline">¶</a></h2> <table class="docutils align-default"> <colgroup> @@ -248,10 +251,10 @@ control system</p></td> </tr> </tbody> </table> -</div> -<div class="section" id="raspberry-pi-configuration"> +</section> +<section id="raspberry-pi-configuration"> <h2>Raspberry Pi configuration<a class="headerlink" href="#raspberry-pi-configuration" title="Permalink to this headline">¶</a></h2> -<div class="section" id="os-installation"> +<section id="os-installation"> <h3>OS installation<a class="headerlink" href="#os-installation" title="Permalink to this headline">¶</a></h3> <p>The first step is to start up the Raspberry Pi board, including installation of an OS (operating system). For this step, the installation instructions are well described on the Raspberry website</p> @@ -262,9 +265,9 @@ For this step, the installation instructions are well described on the Raspberry <div class="admonition note"> <p class="admonition-title">Note</p> <p>All the development tests were performed on Raspberry Pi 3 Model B, we used the following version of Raspbian:</p> -<div class="align-center figure"> +<figure class="align-center"> <a class="reference internal image-reference" href="_images/raspbian_version.jpg"><img alt="alternate text" src="_images/raspbian_version.jpg" style="width: 800px; height: 400px;" /></a> -</div> +</figure> </div> <div class="admonition warning"> <p class="admonition-title">Warning</p> @@ -300,8 +303,8 @@ To ensure that the GPIOs are in Low position, you will need to modify the /boot/ <li><p>Press Ctrl +x to escap and return to the terminal</p></li> <li><p>Close the terminal</p></li> </ol> -</div> -<div class="section" id="virtual-environnement-and-packages"> +</section> +<section id="virtual-environnement-and-packages"> <h3>Virtual Environnement and packages<a class="headerlink" href="#virtual-environnement-and-packages" title="Permalink to this headline">¶</a></h3> <p>All dependencies are specified in requirements.txt</p> <div class="admonition note"> @@ -334,38 +337,38 @@ to leave the virtual environment simply type:</p> <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">deactivate</span> </pre></div> </div> -</div> -<div class="section" id="activate-virtual-environnement-on-thonny-python-ide-on-rapberry-pi"> +</section> +<section id="activate-virtual-environnement-on-thonny-python-ide-on-rapberry-pi"> <h3>Activate virtual environnement on Thonny (Python IDE) (on Rapberry Pi)<a class="headerlink" href="#activate-virtual-environnement-on-thonny-python-ide-on-rapberry-pi" title="Permalink to this headline">¶</a></h3> <p>If you decided to use a virtual environment, it is necessary to setup Thonny Python IDE the first time you use it.</p> <p>1- Run the Thonny Python IDE software, Click on raspebrry acces <strong>menu > programming> Thonny pythonIDE</strong></p> <p>2- Thonny’s interface opens, Python runs on the Root (Python 3.7.3 (/usr/bin/python3))</p> -<div class="align-center figure"> +<figure class="align-center"> <a class="reference internal image-reference" href="_images/thonny_first_interface.jpg"><img alt="alternate text" src="_images/thonny_first_interface.jpg" style="width: 600px; height: 450px;" /></a> -</div> +</figure> <p>3-Click on <strong>Run>select interpreter</strong>, a new window opens click on interpret</p> -<div class="align-center figure"> +<figure class="align-center"> <a class="reference internal image-reference" href="_images/thonny_option.jpg"><img alt="alternate text" src="_images/thonny_option.jpg" style="width: 600px; height: 450px;" /></a> -</div> +</figure> <p>4-On the new open windows select <strong>alternative Pyhton3 or virtual environnement</strong></p> -<div class="align-center figure"> +<figure class="align-center"> <a class="reference internal image-reference" href="_images/thonny_interpreter.jpg"><img alt="alternate text" src="_images/thonny_interpreter.jpg" style="width: 600px; height: 450px;" /></a> -</div> +</figure> <p>5- New buttons appeared, selected <strong>“locate another python executable “</strong></p> <p>6- A new window opens, find the folder where there is the python 3 file in the virtual environment folder previously created <strong>/home/pi/ohmpi/bin/python3</strong>.</p> <p>7- In the <strong>known interpreter</strong> tab the path of the virtual environnementshould appear</p> -<div class="align-center figure"> +<figure class="align-center"> <a class="reference internal image-reference" href="_images/thonny_interpreter_folder.jpg"><img alt="alternate text" src="_images/thonny_interpreter_folder.jpg" style="width: 600px; height: 450px;" /></a> -</div> +</figure> <p>8- Close the window by clicking on <strong>ok</strong>.</p> <p>9- Close thonny to save modifications</p> -</div> -</div> -<div class="section" id="assembly-of-the-measuring-current-injection-cards-and-connection-with-the-raspberry-pi"> +</section> +</section> +<section id="assembly-of-the-measuring-current-injection-cards-and-connection-with-the-raspberry-pi"> <h2>Assembly of the measuring/current injection cards, and connection with the Raspberry Pi<a class="headerlink" href="#assembly-of-the-measuring-current-injection-cards-and-connection-with-the-raspberry-pi" title="Permalink to this headline">¶</a></h2> -<div class="section" id="electrical-resistivity-measurements-board"> +<section id="electrical-resistivity-measurements-board"> <h3>Electrical resistivity measurements board<a class="headerlink" href="#electrical-resistivity-measurements-board" title="Permalink to this headline">¶</a></h3> -<div class="section" id="a-description"> +<section id="a-description"> <h4>a) Description<a class="headerlink" href="#a-description" title="Permalink to this headline">¶</a></h4> <p>To measure electrical resistivity with Raspberry Pi, an ADS1115 was introduced, as proposed by Florsch [7]. The ADS1115 is a 16-bit ADC (Analog-to-Digital Converter), with an adaptable gain. Its value has been set at 2/3 in this study. The @@ -403,16 +406,18 @@ In version 1.02, we have improved the electronic board of measurement. we have a We also added 4 capacitors on the +12v inputs of the fast operational amplifiers. These are decoupling capacitors (typically 100nF ceramic) between each power supply terminal and ground. The last point, we have added a four very high resistances of 10 MOhm, between the ground and the signal input on the operational amplifiers. This prevents the operational amplifiers from overheating.</p> -<div class="align-center figure" id="id1"> +<figure class="align-center" id="id1"> <a class="reference internal image-reference" href="_images/schema_measurement_board1_02.png"><img alt="alternate text" src="_images/schema_measurement_board1_02.png" style="width: 800px; height: 400px;" /></a> -<p class="caption"><span class="caption-text">Measurement board (Ohmpi version 1.02)</span><a class="headerlink" href="#id1" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Measurement board (Ohmpi version 1.02)</span><a class="headerlink" href="#id1" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <div class="admonition note"> <p class="admonition-title">Note</p> <p>If you want to have very accurate measurements you can replace the resistors with a tolerance of 1% by resistors with a tolerance of 0.01% which will improve the measurement, but the cost will be higher.</p> </div> -</div> -<div class="section" id="b-implementation"> +</section> +<section id="b-implementation"> <h4>b) Implementation<a class="headerlink" href="#b-implementation" title="Permalink to this headline">¶</a></h4> <p>The measurement board must be printed using the PCB file (Source file repository), with components soldered onto it by following the steps described below and illustrated in the following figure :</p> @@ -428,14 +433,14 @@ it by following the steps described below and illustrated in the following figur \[coeff p2 = (R7 + R6) / R7\]</div> <div class="math notranslate nohighlight"> \[coeff p3 = (R9 + R8) / R9\]</div> -<div class="highlight-python notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre>36 -37 -38 -39 -40 -41 -42 -43</pre></div></td><td class="code"><div class="highlight"><pre><span></span> <span class="sd">"""</span> +<div class="highlight-python notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre><span class="normal">36</span> +<span class="normal">37</span> +<span class="normal">38</span> +<span class="normal">39</span> +<span class="normal">40</span> +<span class="normal">41</span> +<span class="normal">42</span> +<span class="normal">43</span></pre></div></td><td class="code"><div class="highlight"><pre><span></span> <span class="sd">"""</span> <span class="sd"> hardware parameters</span> <span class="sd"> """</span> <span class="n">R_ref</span> <span class="o">=</span> <span class="mi">50</span> <span class="c1"># reference resistance value in ohm</span> @@ -463,17 +468,21 @@ it by following the steps described below and illustrated in the following figur Once all the components have been soldered together, the measurement board can be connected to the Raspberry Pi and the battery terminal, according to Figure 9. Between the battery and the TX+ terminal of the measurement board, remember to place a fuse holder with a 1.5-A fuse for safety purposes.</p> -<div class="align-center figure" id="id2"> +<figure class="align-center" id="id2"> <a class="reference internal image-reference" href="_images/measurement_board1-02.jpg"><img alt="alternate text" src="_images/measurement_board1-02.jpg" style="width: 800px; height: 700px;" /></a> -<p class="caption"><span class="caption-text">Measurement circuit board assembly: a) printed circuit board, b) adding the 1-Kohm resistors ± 1%, c)adding the 1.5-Kohm resistors ± 1%, d) adding the black female 1 x 10 header and the 7-blue screw terminal block(2 pin, 3.5-mm pitch), e) adding the 50-ohm reference resistor ± 0.1%, and f) adding the ADS1115 and the LM358N low-power dual operational amplifiers</span><a class="headerlink" href="#id2" title="Permalink to this image">¶</a></p> -</div> -<div class="align-center figure" id="id3"> +<figcaption> +<p><span class="caption-text">Measurement circuit board assembly: a) printed circuit board, b) adding the 1-Kohm resistors ± 1%, c)adding the 1.5-Kohm resistors ± 1%, d) adding the black female 1 x 10 header and the 7-blue screw terminal block(2 pin, 3.5-mm pitch), e) adding the 50-ohm reference resistor ± 0.1%, and f) adding the ADS1115 and the LM358N low-power dual operational amplifiers</span><a class="headerlink" href="#id2" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +<figure class="align-center" id="id3"> <a class="reference internal image-reference" href="_images/measurement_board-2-V1-02.jpg"><img alt="alternate text" src="_images/measurement_board-2-V1-02.jpg" style="width: 800px; height: 700px;" /></a> -<p class="caption"><span class="caption-text">Measurement board installation with Raspberry Pi</span><a class="headerlink" href="#id3" title="Permalink to this image">¶</a></p> -</div> -</div> -</div> -<div class="section" id="current-injection-board"> +<figcaption> +<p><span class="caption-text">Measurement board installation with Raspberry Pi</span><a class="headerlink" href="#id3" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +</section> +</section> +<section id="current-injection-board"> <h3>Current injection board<a class="headerlink" href="#current-injection-board" title="Permalink to this headline">¶</a></h3> <p>To carry out the electrical resistivity measurement, the first step consists of injecting current into the ground. In our case, a simple 9-V lead-acid battery is used to create an electrical potential difference that results @@ -486,10 +495,12 @@ to the GPIO 7 on the Raspberry Pi and therefore activate simultaneously. The rol the polarity at electrodes A and B. Thus, when relays 3 and 4 are energized by the GPIO 8 in the open position, the positive battery pole is connected to electrode A and the negative pole to electrode B. When not energized, they remain in the normally closed position. This set-up offers a simple and robust solution to inject current.</p> -<div class="align-center figure" id="id4"> +<figure class="align-center" id="id4"> <a class="reference internal image-reference" href="_images/current_board.jpg"><img alt="alternate text" src="_images/current_board.jpg" style="width: 800px; height: 400px;" /></a> -<p class="caption"><span class="caption-text">Wiring of the 4-channel relay module board for current injection management</span><a class="headerlink" href="#id4" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Wiring of the 4-channel relay module board for current injection management</span><a class="headerlink" href="#id4" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <p>The next step consists of featuring the 4-channel relay module used for current injection and its assembly. The wiring between the relays must be carried out in strict accordance with Fig. 10. This card must then be connected to the Raspberry Pi and the measurement card. On the Raspberry Pi, it is necessary to connect inputs In1 and In2 to the same GPIO. For this @@ -497,20 +508,22 @@ purpose, it is necessary to solder together the two pins on the 4-channel relay the relay card’s 4 channels respectively to the GND pin and 5Vcc of the Raspberry Pi. Now connect relays 1, 2, 3 and 4, as shown in the diagram, using 1-mm2 cables (red and black in Fig. 10). Lastly, connect the inputs of relay 1 and 2 respectively to terminals B and A of the measurement board.</p> -<div class="align-center figure" id="id5"> +<figure class="align-center" id="id5"> <a class="reference internal image-reference" href="_images/installation_current_board_1_02.jpg"><img alt="alternate text" src="_images/installation_current_board_1_02.jpg" style="width: 800px; height: 700px;" /></a> -<p class="caption"><span class="caption-text">Current injection board installation with Raspberry Pi</span><a class="headerlink" href="#id5" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Current injection board installation with Raspberry Pi</span><a class="headerlink" href="#id5" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <p>Congratulations, you have build a 4 electrodes resistivity-meter.</p> -</div> -<div class="section" id="frist-four-electrodes-resistivity-mesurement"> +</section> +<section id="frist-four-electrodes-resistivity-mesurement"> <h3>Frist four electrodes resistivity mesurement<a class="headerlink" href="#frist-four-electrodes-resistivity-mesurement" title="Permalink to this headline">¶</a></h3> <p>Under construction !</p> <p>Describe the way to valide the first part of the instruction. Electrical resistivity measurement on test circuit</p> -</div> -</div> -<div class="section" id="multiplexer-implentation"> +</section> +</section> +<section id="multiplexer-implentation"> <h2>Multiplexer implentation<a class="headerlink" href="#multiplexer-implentation" title="Permalink to this headline">¶</a></h2> <p>The resistivity measurement is conducted on four terminals (A, B, M and N). The user could perform each measurement by manually plugging four electrodes into the four channel terminals. In practice, ERT requires several tens or thousands @@ -521,10 +534,12 @@ modules with 16 channels each. On the first board, on each MUX, 15 relays out of configuration enables making smaller multiplexers (8 or 16 electrodes only). On the other hand, if you prefer upping to 64 electrodes, which is entirely possible, a GPIO channel multiplier will have to be used. To prepare the multiplexer, the channels of the two relay boards must be connected according to the wiring diagram shown below.</p> -<div class="align-center figure" id="id6"> +<figure class="align-center" id="id6"> <a class="reference internal image-reference" href="_images/multiplexer_implementation.jpg"><img alt="alternate text" src="_images/multiplexer_implementation.jpg" style="width: 800px; height: 500px;" /></a> -<p class="caption"><span class="caption-text">Schematic diagram of the wiring of two 16-channel relay shields</span><a class="headerlink" href="#id6" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Schematic diagram of the wiring of two 16-channel relay shields</span><a class="headerlink" href="#id6" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <p>For this purpose, 0.5-mm² cables with end caps are used and their length adjusted for each connection in order to produce a clean assembly. The length was adjusted so that the distance between the two points to be connected could be directly measured on the board once they had been assembled one above the other, in adding an extra 3 cm. The wires at the ends need to be stripped and the end caps added. @@ -533,10 +548,12 @@ As a final step, connect the cables to the correct connectors. This operation mu for activating each relay (Fig. 12). However, we will be activating several relays with a single GPIO (to limit the number of GPIOs used on Raspberry Pi, see Section 2.4). To execute this step, it will be necessary to follow the protocol presented in Figure.</p> <blockquote> -<div><div class="align-center figure" id="id7"> +<div><figure class="align-center" id="id7"> <a class="reference internal image-reference" href="_images/connection.jpg"><img alt="alternate text" src="_images/connection.jpg" style="width: 800px; height: 400px;" /></a> -<p class="caption"><span class="caption-text">Connection to the 16-channel relay shield</span><a class="headerlink" href="#id7" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Connection to the 16-channel relay shield</span><a class="headerlink" href="#id7" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> </div></blockquote> <p>For the 16-channel relay shield no. 1, these steps must be followed: * Position a test circuit with 10 horizontal and 10 vertical holes on the pins of the 16-channel relay shield board. @@ -598,39 +615,43 @@ The next step consists of connecting the relay card inputs to the Raspberry Pi a <blockquote> <div><p>Connection of the GPIOs to each multiplexer</p> </div></blockquote> -</div> -<div class="section" id="electrode-connection"> +</section> +<section id="electrode-connection"> <h2>Electrode connection<a class="headerlink" href="#electrode-connection" title="Permalink to this headline">¶</a></h2> <p>At this point, all that remains is to connect the electrodes of each multiplexer to a terminal block (Fig. 13). In our set-up, screw terminals assembled on a din rail were used. According to the chosen multiplexer configuration, all the relays of each multiplexer will be connected to an electrode and, consequently, each electrode will have four incoming connections. Instead of having four cables connecting an electrode terminal to each multiplexer, we recommend using the cable assembly shown in the following Figure.</p> -<div class="align-center figure" id="id8"> +<figure class="align-center" id="id8"> <a class="reference internal image-reference" href="_images/cable.jpg"><img alt="alternate text" src="_images/cable.jpg" style="width: 800px; height: 300px;" /></a> -<p class="caption"><span class="caption-text">Wire cabling for multiplexer and terminal screw connection</span><a class="headerlink" href="#id8" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Wire cabling for multiplexer and terminal screw connection</span><a class="headerlink" href="#id8" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <p>the next figure provides an example of multiplexer relay connections for electrode no. 1: this electrode of multiplexer MUX A must be connected to electrode no. 1 of MUX B. Moreover, electrode no. 1 of MUX B must be connected to electrode no. 1 of MUX N, which in turn must be connected to electrode no. 1 of MUX M. Lastly, electrode no. 1 of MUX M is connected to the terminal block. This operation must be repeated for all 32 electrodes.</p> -<div class="align-center figure" id="id9"> +<figure class="align-center" id="id9"> <a class="reference internal image-reference" href="_images/electrode_cable.jpg"><img alt="alternate text" src="_images/electrode_cable.jpg" style="width: 800px; height: 800px;" /></a> -<p class="caption"><span class="caption-text">Example of a multiplexer connection to the screw terminal for electrode no. 1.</span><a class="headerlink" href="#id9" title="Permalink to this image">¶</a></p> -</div> +<figcaption> +<p><span class="caption-text">Example of a multiplexer connection to the screw terminal for electrode no. 1.</span><a class="headerlink" href="#id9" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> <div class="admonition warning"> <p class="admonition-title">Warning</p> <p>The 16 channel relay cards exist in 5-V and 12-V , in the bottom figure we have 12-V cards that we will directly connect to the battery. In case you bought 16 channel relay 5-V cards, you will need to add a DC/DC 12-V/5-V converter. You can use a STEP DOWN MODULE DC-DC (Velleman WPM404) and set the voltage to 5V with the potentiometer.</p> </div> -</div> -<div class="section" id="operating-instruction"> +</section> +<section id="operating-instruction"> <h2>Operating instruction<a class="headerlink" href="#operating-instruction" title="Permalink to this headline">¶</a></h2> -<div class="section" id="preliminary-procedure-only-for-the-initial-operation"> +<section id="preliminary-procedure-only-for-the-initial-operation"> <h3>Preliminary procedure (Only for the initial operation)<a class="headerlink" href="#preliminary-procedure-only-for-the-initial-operation" title="Permalink to this headline">¶</a></h3> <p>The open source code must be downloaded at the Open Science Framework source file repository for this manuscript (<a class="reference external" href="https://osf.io/dzwb4/">https://osf.io/dzwb4/</a>) or at the following Gitlab repository address: <a class="reference external" href="https://gitlab.irstea.fr/reversaal/OhmPi">https://gitlab.irstea.fr/reversaal/OhmPi</a>. The code must be then unzipped into a selected folder (e.g. OhmPi-master). A “readme†file is proposed in the directory to assist with installation of the software and required python packages. It is strongly recommended to create a python virtual environment for installing the required packages and running the code.</p> -</div> -<div class="section" id="startup-procedure"> +</section> +<section id="startup-procedure"> <h3>Startup procedure<a class="headerlink" href="#startup-procedure" title="Permalink to this headline">¶</a></h3> <p>As an initial operating instruction, all batteries must be disconnected before any hardware handling. Ensure that the battery is charged at full capacity. Plug all the electrodes (32 or fewer) into the screw terminals. The Raspberry Pi must be plugged into a computer screen, with a mouse and keyboard accessed remotely. The Raspberry Pi must then be plugged into the power supply @@ -640,16 +661,16 @@ function may be adjusted/optimized depending on the measurement attributes. For plugged into the hardware; the “ohmpi.py†source code must be run within a python3 environment (or a virtual environment if one has been created) either in the terminal or using Thonny. You should now hear the characteristic sound of a relay switching as a result of electrode permutation. After each quadrupole measurement, the potential difference as well as the current intensity and resistance are displayed on the screen. A measurement file is automatically created and named “measure.csvâ€; it will be placed in the same folder.</p> -</div> -<div class="section" id="electrical-resistivity-measurement-parameters-description"> +</section> +<section id="electrical-resistivity-measurement-parameters-description"> <h3>Electrical resistivity measurement parameters description<a class="headerlink" href="#electrical-resistivity-measurement-parameters-description" title="Permalink to this headline">¶</a></h3> <p>In the version 1.02, the measurement parameters are in the Jason file (ohmpi_param.json).</p> -<div class="highlight-python notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre>1 -2 -3 -4 -5 -6</pre></div></td><td class="code"><div class="highlight"><pre><span></span> <span class="n">nb_electrodes</span> <span class="o">=</span> <span class="mi">32</span> <span class="c1"># maximum number of electrodes on the resistivity meter</span> +<div class="highlight-python notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre><span class="normal">1</span> +<span class="normal">2</span> +<span class="normal">3</span> +<span class="normal">4</span> +<span class="normal">5</span> +<span class="normal">6</span></pre></div></td><td class="code"><div class="highlight"><pre><span></span> <span class="n">nb_electrodes</span> <span class="o">=</span> <span class="mi">32</span> <span class="c1"># maximum number of electrodes on the resistivity meter</span> <span class="n">injection_duration</span> <span class="o">=</span> <span class="mf">0.5</span> <span class="c1"># Current injection duration in second</span> <span class="n">nbr_meas</span><span class="o">=</span> <span class="mi">1</span> <span class="c1"># Number of times the quadripole sequence is repeated</span> <span class="n">sequence_delay</span><span class="o">=</span> <span class="mi">30</span> <span class="c1"># Delay in seconds between 2 sequences</span> @@ -657,185 +678,16 @@ are displayed on the screen. A measurement file is automatically created and nam <span class="n">export_path</span><span class="o">=</span> <span class="s2">"home/pi/Desktop/measurement.csv"</span> </pre></div> </td></tr></table></div> -</div> -</div> -<div class="section" id="complete-list-of-components"> +</section> +</section> +<section id="complete-list-of-components"> <h2>Complete list of components<a class="headerlink" href="#complete-list-of-components" title="Permalink to this headline">¶</a></h2> <div class="admonition warning"> <p class="admonition-title">Warning</p> <p>The list evolve a little bit after the publication of the article, it is necessary to refer to this list, the article is out of date</p> </div> -<table class="colwidths-given docutils align-default" id="id10"> -<caption><span class="caption-text">List of components</span><a class="headerlink" href="#id10" title="Permalink to this table">¶</a></caption> -<colgroup> -<col style="width: 8%" /> -<col style="width: 18%" /> -<col style="width: 18%" /> -<col style="width: 18%" /> -<col style="width: 18%" /> -<col style="width: 18%" /> -</colgroup> -<thead> -<tr class="row-odd"><th class="head"><p>Component</p></th> -<th class="head"><p>Number</p></th> -<th class="head"><p>Cost per unit</p></th> -<th class="head"><p>Total cost</p></th> -<th class="head"><p>Manufacturer</p></th> -<th class="head"><p>Manufacturer s reference</p></th> -</tr> -</thead> -<tbody> -<tr class="row-even"><td><p>Raspberry Pi 3 Model B+</p></td> -<td><p>1</p></td> -<td><p>37</p></td> -<td><p>37</p></td> -<td><p>Raspberry</p></td> -<td><p>Raspberry Pi 3 Model B</p></td> -</tr> -<tr class="row-odd"><td><p>Raspberry Pi 1 2 and 3 Power Supply</p></td> -<td><p>1</p></td> -<td><p>8.37</p></td> -<td><p>8.37</p></td> -<td><p>Raspberry</p></td> -<td><p>Raspberry Pi 1 2 and 3 Power Supply</p></td> -</tr> -<tr class="row-even"><td><p>SainSmart 16-Channel 12V Relay</p></td> -<td><p>8</p></td> -<td><p>24.99</p></td> -<td><p>199.92</p></td> -<td><p>Sain Smart</p></td> -<td><p>101-70-103</p></td> -</tr> -<tr class="row-odd"><td><p>4-Channel 5V Relay Module</p></td> -<td><p>1</p></td> -<td><p>7.99</p></td> -<td><p>7.99</p></td> -<td><p>Sain Smart</p></td> -<td><p>20-018-101-CMS</p></td> -</tr> -<tr class="row-even"><td><p>cable 1X1 mm2 (50 m)</p></td> -<td><p>1</p></td> -<td><p>19.66</p></td> -<td><p>19.66</p></td> -<td><p>TRU COMPONENTS</p></td> -<td><p>1568649</p></td> -</tr> -<tr class="row-odd"><td><p>cable 1X0.5 mm2 (100 m)</p></td> -<td><p>1</p></td> -<td><p>29.71</p></td> -<td><p>29.71</p></td> -<td><p>TRU COMPONENTS</p></td> -<td><p>1565235</p></td> -</tr> -<tr class="row-even"><td><p>Printed circuit board (packaging quantity x 3)</p></td> -<td><p>1</p></td> -<td><p>12</p></td> -<td><p>12</p></td> -<td><p>Asler</p></td> -<td><p>0</p></td> -</tr> -<tr class="row-odd"><td><p>Header sets 1x10</p></td> -<td><p>1</p></td> -<td><p>2.68</p></td> -<td><p>2.68</p></td> -<td><p>Samtec</p></td> -<td><p>SSW-110-02-G-S</p></td> -</tr> -<tr class="row-even"><td><p>Dual screw terminal (3.5-mm pitch)</p></td> -<td><p>7</p></td> -<td><p>0.648</p></td> -<td><p>4.55</p></td> -<td><p>RS PRO</p></td> -<td><p>897-1332</p></td> -</tr> -<tr class="row-odd"><td><p>Resistor 1 Kohm 0.5W +- 0.1%</p></td> -<td><p>4</p></td> -<td><p>0.858</p></td> -<td><p>3.44</p></td> -<td><p>TE Connectivity</p></td> -<td><p>H81K0BYA</p></td> -</tr> -<tr class="row-even"><td><p>Resistor 1.5 Kohms +- 0.1%</p></td> -<td><p>4</p></td> -<td><p>0.627</p></td> -<td><p>2.52</p></td> -<td><p>TE Connectivity</p></td> -<td><p>H81K5BYA</p></td> -</tr> -<tr class="row-odd"><td><p>Resistor 50 +- 0.1%</p></td> -<td><p>1</p></td> -<td><p>8.7</p></td> -<td><p>8.7</p></td> -<td><p>TE Connectivity</p></td> -<td><p>UPW50B50RV</p></td> -</tr> -<tr class="row-even"><td><p>LM358N AMP-o</p></td> -<td><p>4</p></td> -<td><p>0.8</p></td> -<td><p>2.4</p></td> -<td><p>Texas Instruments</p></td> -<td><p>LM358AN/NOPB</p></td> -</tr> -<tr class="row-odd"><td><p>ADS1115</p></td> -<td><p>1</p></td> -<td><p>11.9</p></td> -<td><p>11.9</p></td> -<td><p>Adafruit</p></td> -<td><p>1083</p></td> -</tr> -<tr class="row-even"><td><p>12V battery 7ah</p></td> -<td><p>1</p></td> -<td><p>19.58</p></td> -<td><p>19.58</p></td> -<td><p>RS PRO</p></td> -<td><p>537-5488</p></td> -</tr> -<tr class="row-odd"><td><p>Battery Holder Type D LR20 (9V)</p></td> -<td><p>1</p></td> -<td><p>3.43</p></td> -<td><p>3.43</p></td> -<td><p>RS PRO</p></td> -<td><p>185-4686</p></td> -</tr> -<tr class="row-even"><td><p>Ferrule Crimp Terminal (1 mm2) (500 pieces)</p></td> -<td><p>1</p></td> -<td><p>30.48</p></td> -<td><p>30.48</p></td> -<td><p>WEIDMULLER</p></td> -<td><p>9004330000</p></td> -</tr> -<tr class="row-odd"><td><p>Electrical Crimp Terminal (0.5 mm2) (100 piece)</p></td> -<td><p>1</p></td> -<td><p>6.38</p></td> -<td><p>6.38</p></td> -<td><p>AMP - TE CONNECTIVITY</p></td> -<td><p>966067-1</p></td> -</tr> -<tr class="row-even"><td><p>Fuse 1.0 A</p></td> -<td><p>1</p></td> -<td><p>0.2</p></td> -<td></td> -<td><p>LITTELFUSE</p></td> -<td><p>0251001.PAT1L</p></td> -</tr> -<tr class="row-odd"><td><p>Capacitor 100nF 50Vdc 10% Ceramic</p></td> -<td><p>4</p></td> -<td><p>0.2</p></td> -<td><p>0.8</p></td> -<td><p>KEMET</p></td> -<td><p>C320C104K1</p></td> -</tr> -<tr class="row-even"><td><p>DC/DC converter 12 to 24V</p></td> -<td><p>2</p></td> -<td><p>26.72</p></td> -<td><p>53.44</p></td> -<td><p>TracoPower</p></td> -<td><p>TRN 3-1215</p></td> -</tr> -</tbody> -</table> -</div> -</div> +</section> +</section> </div> @@ -845,6 +697,8 @@ are displayed on the screen. A measurement file is automatically created and nam <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation"> + <a href="V2_00.html" class="btn btn-neutral float-right" title="OhmPi V 2.00 (64 or 128 électrodes)" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a> + <a href="V1_01.html" class="btn btn-neutral float-left" title="OhmPi V 1.01 (limited to 32 electrodes)" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a> diff --git a/sphinx/build/html/V2_00.html b/sphinx/build/html/V2_00.html new file mode 100644 index 0000000000000000000000000000000000000000..67cb06f65eb4323808a4eef31938ee0a8b3d47f3 --- /dev/null +++ b/sphinx/build/html/V2_00.html @@ -0,0 +1,746 @@ + + +<!DOCTYPE html> +<html class="writer-html5" lang="en" > +<head> + <meta charset="utf-8"> + <meta name="generator" content="Docutils 0.17: http://docutils.sourceforge.net/" /> + + <meta name="viewport" content="width=device-width, initial-scale=1.0"> + + <title>OhmPi V 2.00 (64 or 128 électrodes) — Ohmpi: open hardware resistivity-meter documentation</title> + + + + <link rel="stylesheet" href="_static/css/theme.css" type="text/css" /> + <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> + + + + + + + + <!--[if lt IE 9]> + <script src="_static/js/html5shiv.min.js"></script> + <![endif]--> + + + <script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script> + <script src="_static/jquery.js"></script> + <script src="_static/underscore.js"></script> + <script src="_static/doctools.js"></script> + <script src="_static/language_data.js"></script> + <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS-MML_HTMLorMML"></script> + + <script type="text/javascript" src="_static/js/theme.js"></script> + + + <link rel="index" title="Index" href="genindex.html" /> + <link rel="search" title="Search" href="search.html" /> + <link rel="prev" title="OhmPi V 1.02 (limited to 32 electrodes)" href="V1_02.html" /> +</head> + +<body class="wy-body-for-nav"> + + + <div class="wy-grid-for-nav"> + + <nav data-toggle="wy-nav-shift" class="wy-nav-side"> + <div class="wy-side-scroll"> + <div class="wy-side-nav-search" > + + + + <a href="index.html" class="icon icon-home" alt="Documentation Home"> Ohmpi: + + + + </a> + + + + + + + +<div role="search"> + <form id="rtd-search-form" class="wy-form" action="search.html" method="get"> + <input type="text" name="q" placeholder="Search docs" /> + <input type="hidden" name="check_keywords" value="yes" /> + <input type="hidden" name="area" value="default" /> + </form> +</div> + + + </div> + + + <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation"> + + + + + + + <ul class="current"> +<li class="toctree-l1"><a class="reference internal" href="Ohmpi.html">OhmPi project</a></li> +<li class="toctree-l1"><a class="reference internal" href="V1_01.html">OhmPi V 1.01 (limited to 32 electrodes)</a></li> +<li class="toctree-l1"><a class="reference internal" href="V1_02.html">OhmPi V 1.02 (limited to 32 electrodes)</a></li> +<li class="toctree-l1 current"><a class="current reference internal" href="#">OhmPi V 2.00 (64 or 128 électrodes)</a><ul> +<li class="toctree-l2"><a class="reference internal" href="#the-philosophy-of-ohmpi">The philosophy of Ohmpi</a></li> +<li class="toctree-l2"><a class="reference internal" href="#technical-data">Technical data</a></li> +<li class="toctree-l2"><a class="reference internal" href="#raspberry-pi-configuration">Raspberry Pi configuration</a><ul> +<li class="toctree-l3"><a class="reference internal" href="#os-installation">OS installation</a></li> +<li class="toctree-l3"><a class="reference internal" href="#virtual-environnement-and-packages">Virtual Environnement and packages</a></li> +<li class="toctree-l3"><a class="reference internal" href="#activate-virtual-environnement-on-thonny-python-ide-on-rapberry-pi">Activate virtual environnement on Thonny (Python IDE) (on Rapberry Pi)</a></li> +</ul> +</li> +<li class="toctree-l2"><a class="reference internal" href="#assembly-of-the-measuring-current-injection-cards-and-connection-with-the-raspberry-pi">Assembly of the measuring/current injection cards, and connection with the Raspberry Pi</a><ul> +<li class="toctree-l3"><a class="reference internal" href="#electrical-resistivity-measurements-board">Electrical resistivity measurements board</a><ul> +<li class="toctree-l4"><a class="reference internal" href="#a-description">a) Description</a></li> +<li class="toctree-l4"><a class="reference internal" href="#b-implementation">b) Implementation</a></li> +</ul> +</li> +<li class="toctree-l3"><a class="reference internal" href="#current-injection-board">Current injection board</a></li> +<li class="toctree-l3"><a class="reference internal" href="#frist-four-electrodes-resistivity-mesurement">Frist four electrodes resistivity mesurement</a></li> +</ul> +</li> +<li class="toctree-l2"><a class="reference internal" href="#multiplexer-implentation">Multiplexer implentation</a></li> +<li class="toctree-l2"><a class="reference internal" href="#electrode-connection">Electrode connection</a></li> +<li class="toctree-l2"><a class="reference internal" href="#operating-instruction">Operating instruction</a><ul> +<li class="toctree-l3"><a class="reference internal" href="#preliminary-procedure-only-for-the-initial-operation">Preliminary procedure (Only for the initial operation)</a></li> +<li class="toctree-l3"><a class="reference internal" href="#startup-procedure">Startup procedure</a></li> +<li class="toctree-l3"><a class="reference internal" href="#electrical-resistivity-measurement-parameters-description">Electrical resistivity measurement parameters description</a></li> +</ul> +</li> +<li class="toctree-l2"><a class="reference internal" href="#complete-list-of-components">Complete list of components</a></li> +</ul> +</li> +</ul> + + + + </div> + + </div> + </nav> + + <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"> + + + <nav class="wy-nav-top" aria-label="top navigation"> + + <i data-toggle="wy-nav-top" class="fa fa-bars"></i> + <a href="index.html">Ohmpi:</a> + + </nav> + + + <div class="wy-nav-content"> + + <div class="rst-content"> + + + + + + + + + + + + + + + + + +<div role="navigation" aria-label="breadcrumbs navigation"> + + <ul class="wy-breadcrumbs"> + + <li><a href="index.html" class="icon icon-home"></a> »</li> + + <li>OhmPi V 2.00 (64 or 128 électrodes)</li> + + + <li class="wy-breadcrumbs-aside"> + + + <a href="_sources/V2_00.rst.txt" rel="nofollow"> View page source</a> + + + </li> + + </ul> + + + <hr/> +</div> + <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> + <div itemprop="articleBody"> + + <section id="ohmpi-v-2-00-64-or-128-electrodes"> +<h1>OhmPi V 2.00 (64 or 128 électrodes)<a class="headerlink" href="#ohmpi-v-2-00-64-or-128-electrodes" title="Permalink to this headline">¶</a></h1> +<div class="admonition note"> +<p class="admonition-title">Note</p> +<p>In this version, we have improved the electronic measurement board. To upgrade from version 1.01 to 1.02, +you just have to replace the measurement board by the new one proposed here.</p> +</div> +<section id="the-philosophy-of-ohmpi"> +<h2>The philosophy of Ohmpi<a class="headerlink" href="#the-philosophy-of-ohmpi" title="Permalink to this headline">¶</a></h2> +<p>The philosophy of Ohmpi V1.01 is to offer a multi electrode resistivity meter, from a set of commercially available +electronic cards it is a resistivity meter limited to 32 electrodes only. It is limited to low-current injection, +but suitable for small laboratory experiments and small field time monitoring</p> +</section> +<section id="technical-data"> +<h2>Technical data<a class="headerlink" href="#technical-data" title="Permalink to this headline">¶</a></h2> +<table class="docutils align-default"> +<colgroup> +<col style="width: 50%" /> +<col style="width: 32%" /> +<col style="width: 18%" /> +</colgroup> +<tbody> +<tr class="row-odd"><td><p><strong>Parameter</strong></p></td> +<td><p><strong>Specifications</strong></p></td> +<td><p>Units</p></td> +</tr> +<tr class="row-even"><td><p>Electrodes</p></td> +<td><p>32</p></td> +<td></td> +</tr> +<tr class="row-odd"><td><p>Operating temperature</p></td> +<td><p>0 to 50</p></td> +<td><p>°c</p></td> +</tr> +<tr class="row-even"><td><p>Power consumption of CPU and +control system</p></td> +<td><p>18.5</p></td> +<td><p>W</p></td> +</tr> +<tr class="row-odd"><td><p>Voltage injection</p></td> +<td><p>9</p></td> +<td><p>V</p></td> +</tr> +<tr class="row-even"><td><p>Battery</p></td> +<td><p>12</p></td> +<td><p>V</p></td> +</tr> +<tr class="row-odd"><td><p>Current</p></td> +<td><p>0 to 50</p></td> +<td><p>mA</p></td> +</tr> +<tr class="row-even"><td><p>Min pulse duration</p></td> +<td><p>150</p></td> +<td><p>mS</p></td> +</tr> +<tr class="row-odd"><td><p>Input impedance</p></td> +<td><p>36</p></td> +<td><p>Mohm</p></td> +</tr> +<tr class="row-even"><td><p>Data storage</p></td> +<td><p>micro SD card</p></td> +<td></td> +</tr> +<tr class="row-odd"><td><p>Resolution</p></td> +<td><p>O.O1</p></td> +<td><p>ohm</p></td> +</tr> +</tbody> +</table> +</section> +<section id="raspberry-pi-configuration"> +<h2>Raspberry Pi configuration<a class="headerlink" href="#raspberry-pi-configuration" title="Permalink to this headline">¶</a></h2> +<section id="os-installation"> +<h3>OS installation<a class="headerlink" href="#os-installation" title="Permalink to this headline">¶</a></h3> +<p>The first step is to start up the Raspberry Pi board, including installation of an OS (operating system). +For this step, the installation instructions are well described on the Raspberry website</p> +<ol class="arabic simple"> +<li><p>Watch the vidéo “how to set up your raspberry Pi†(<a class="reference external" href="https://www.youtube.com/watch?v=wjWZhV1v3Pk">https://www.youtube.com/watch?v=wjWZhV1v3Pk</a>)</p></li> +<li><p>The authors recommend installing the latest stable and complete version of Raspbian by using NOOBS (a simple-to-use operating system installer).</p></li> +</ol> +<div class="admonition note"> +<p class="admonition-title">Note</p> +<p>All the development tests were performed on Raspberry Pi 3 Model B, we used the following version of Raspbian:</p> +<figure class="align-center"> +<a class="reference internal image-reference" href="_images/raspbian_version.jpg"><img alt="alternate text" src="_images/raspbian_version.jpg" style="width: 800px; height: 400px;" /></a> +</figure> +</div> +<div class="admonition warning"> +<p class="admonition-title">Warning</p> +<p>Once the OS has been installed, <strong>1-wire, spi and GPIO remote option</strong> must be deactivated via the Raspbian GUI settings menu. Failure to carry out this task may cause damage to the relay shield cards during measurements.</p> +</div> +<p>3. When the relays are connected to the GPIO, make sure that all the GPIOs are in the low position when the raspberry starts up. If not, the relays will activate unexpectedly. +To ensure that the GPIOs are in Low position, you will need to modify the /boot/config.txt file.</p> +<blockquote> +<div><p>Run the terminal, and write</p> +<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">cd</span> <span class="o">/</span><span class="n">boot</span><span class="o">/</span> +</pre></div> +</div> +</div></blockquote> +<ol class="arabic simple" start="4"> +<li><p>Open config.txt with GNU nano editor</p></li> +</ol> +<blockquote> +<div><div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">sudo</span> <span class="n">nano</span> <span class="n">config</span><span class="o">.</span><span class="n">txt</span> +</pre></div> +</div> +</div></blockquote> +<ol class="arabic simple" start="5"> +<li><p>At the end of the file write :</p></li> +</ol> +<blockquote> +<div><div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">gpio</span><span class="o">=</span><span class="mi">8</span><span class="o">=</span><span class="n">op</span><span class="p">,</span><span class="n">dl</span> +<span class="n">gpio</span><span class="o">=</span><span class="mi">7</span><span class="o">=</span><span class="n">op</span><span class="p">,</span><span class="n">dl</span> +</pre></div> +</div> +</div></blockquote> +<ol class="arabic simple" start="6"> +<li><p>Press Ctrl +O to save the modifications and press enter</p></li> +<li><p>Press Ctrl +x to escap and return to the terminal</p></li> +<li><p>Close the terminal</p></li> +</ol> +</section> +<section id="virtual-environnement-and-packages"> +<h3>Virtual Environnement and packages<a class="headerlink" href="#virtual-environnement-and-packages" title="Permalink to this headline">¶</a></h3> +<p>All dependencies are specified in requirements.txt</p> +<div class="admonition note"> +<p class="admonition-title">Note</p> +<p>All instructions below should be typed in the terminal</p> +</div> +<p>It is first necessary to ensure that the libatlas-base-dev library is installed:</p> +<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">sudo</span> <span class="n">apt</span><span class="o">-</span><span class="n">get</span> <span class="n">install</span> <span class="n">libatlas</span><span class="o">-</span><span class="n">base</span><span class="o">-</span><span class="n">dev</span> +</pre></div> +</div> +<p>We strongly recommend users to create a virtual environment to run the code and installed all required dependencies. It can be done either in a directory gathering all virtual environments used on the computer or within the ohmpy directory.</p> +<p>Create the virtual environment:</p> +<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">python3</span> <span class="o">-</span><span class="n">m</span> <span class="n">venv</span> <span class="n">ohmpy</span> +</pre></div> +</div> +<p>Activate it using the following command:</p> +<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">source</span> <span class="n">ohmpy</span><span class="o">/</span><span class="nb">bin</span><span class="o">/</span><span class="n">activate</span> +</pre></div> +</div> +<p>Install packages within the virtual environment. Installing the following package should be sufficient to meet dependencies:</p> +<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pip</span> <span class="n">install</span> <span class="n">RPi</span><span class="o">.</span><span class="n">GPIO</span> <span class="n">adafruit</span><span class="o">-</span><span class="n">blinka</span> <span class="n">numpy</span> <span class="n">adafruit</span><span class="o">-</span><span class="n">circuitpython</span><span class="o">-</span><span class="n">ads1x15</span> <span class="n">pandas</span> +</pre></div> +</div> +<p>Check that requirements are met using</p> +<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">pip</span> <span class="nb">list</span> +</pre></div> +</div> +<p>You should run you code within the virtual environment +to leave the virtual environment simply type:</p> +<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">deactivate</span> +</pre></div> +</div> +</section> +<section id="activate-virtual-environnement-on-thonny-python-ide-on-rapberry-pi"> +<h3>Activate virtual environnement on Thonny (Python IDE) (on Rapberry Pi)<a class="headerlink" href="#activate-virtual-environnement-on-thonny-python-ide-on-rapberry-pi" title="Permalink to this headline">¶</a></h3> +<p>If you decided to use a virtual environment, it is necessary to setup Thonny Python IDE the first time you use it.</p> +<p>1- Run the Thonny Python IDE software, Click on raspebrry acces <strong>menu > programming> Thonny pythonIDE</strong></p> +<p>2- Thonny’s interface opens, Python runs on the Root (Python 3.7.3 (/usr/bin/python3))</p> +<figure class="align-center"> +<a class="reference internal image-reference" href="_images/thonny_first_interface.jpg"><img alt="alternate text" src="_images/thonny_first_interface.jpg" style="width: 600px; height: 450px;" /></a> +</figure> +<p>3-Click on <strong>Run>select interpreter</strong>, a new window opens click on interpret</p> +<figure class="align-center"> +<a class="reference internal image-reference" href="_images/thonny_option.jpg"><img alt="alternate text" src="_images/thonny_option.jpg" style="width: 600px; height: 450px;" /></a> +</figure> +<p>4-On the new open windows select <strong>alternative Pyhton3 or virtual environnement</strong></p> +<figure class="align-center"> +<a class="reference internal image-reference" href="_images/thonny_interpreter.jpg"><img alt="alternate text" src="_images/thonny_interpreter.jpg" style="width: 600px; height: 450px;" /></a> +</figure> +<p>5- New buttons appeared, selected <strong>“locate another python executable “</strong></p> +<p>6- A new window opens, find the folder where there is the python 3 file in the virtual environment folder previously created <strong>/home/pi/ohmpi/bin/python3</strong>.</p> +<p>7- In the <strong>known interpreter</strong> tab the path of the virtual environnementshould appear</p> +<figure class="align-center"> +<a class="reference internal image-reference" href="_images/thonny_interpreter_folder.jpg"><img alt="alternate text" src="_images/thonny_interpreter_folder.jpg" style="width: 600px; height: 450px;" /></a> +</figure> +<p>8- Close the window by clicking on <strong>ok</strong>.</p> +<p>9- Close thonny to save modifications</p> +</section> +</section> +<section id="assembly-of-the-measuring-current-injection-cards-and-connection-with-the-raspberry-pi"> +<h2>Assembly of the measuring/current injection cards, and connection with the Raspberry Pi<a class="headerlink" href="#assembly-of-the-measuring-current-injection-cards-and-connection-with-the-raspberry-pi" title="Permalink to this headline">¶</a></h2> +<section id="electrical-resistivity-measurements-board"> +<h3>Electrical resistivity measurements board<a class="headerlink" href="#electrical-resistivity-measurements-board" title="Permalink to this headline">¶</a></h3> +<section id="a-description"> +<h4>a) Description<a class="headerlink" href="#a-description" title="Permalink to this headline">¶</a></h4> +<p>To measure electrical resistivity with Raspberry Pi, an ADS1115 was introduced, as proposed by Florsch [7]. The ADS1115 +is a 16-bit ADC (Analog-to-Digital Converter), with an adaptable gain. Its value has been set at 2/3 in this study. The +input signal value could lie between - to + 6.114 V. The ADS1115 is mounted on a board adapted from an in-house design. +Figure 5 shows the general diagram for the electronic measurement board developed. This figure also displays the test +circuit used to test the board in the laboratory, which mimics the behavior of a soil subjected to current injection. +In this test circuit, resistance R11 represents the soil resistance. +Soil resistance R11 is connected to electrodes A and B for the current injection. Resistors R10 and R12 constitute +the contact resistances between soil and electrodes; they are typically made of stainless steel. The battery, which +allows for direct current injection, is connected in series with resistors R10, R11 and R12. In this part of the board, +resistance R9 has been added to measure the current flowing between electrodes A and B. This resistance value has been +set at 50 ohms in order to ensure: +• a precise resistance, +• a resistance less than the sum of resistors R10, R11 and R12; indeed, R10 and R12 generally lie between 100 and 5,000 ohms. +To measure the current intensity between A and B, the electrical potential difference at the pole of the reference resistor (R9) +is measured. The intensity (in mA) is calculated by inserting the resulting value into the following: ? +To measure the potential difference needed to measure current intensity, the ADS 1115 is connected to the ground of the circuit. +In our case, the ground reference is electrode B. The analog inputs A1 and A0 of the ADS1115 are connected to each pole of the +reference resistor (R9). In order to increase input impedance and adapt the signal gain, tracking amplifiers have been included +and completed by a divider bridge (R5, R8, R6 and R7) located between the two amplifiers. The resistance of the divider bridge +ensures that the signal remains between 0 and 5 V, in accordance with the ADS1115 signal gain. To measure the potential difference, +the M and N electrodes are connected to analog inputs A2 and A3 of the ADS 1115. Between the ADC and the electrodes, two tracking +amplifiers and a divider bridge have been positioned so as to obtain a potential lying within the 0-5 V range at the analog input of the ADS 1115. +Let’s note that the potential difference value would equal the potential measured with ADS1115 multiplied by the voltage reduction +value of the divider bridge (see Section 5.2). Despite the use of high-resolution resistance (i.e. accurate to within 1%), it is +still necessary to calibrate the divider bridge using a precision voltmeter. For this purpose, the input and output potentials +of the divider bridge must be measured using an equivalent circuit for various electrical potential values. These values serve +to calculate the gain. With this electronic board, it is possible to measure the potential and intensity without disturbing the +electric field in the ground, with the total input impedance value being estimated at 36 mega-ohms. +A shortcut between Electrodes A and B will generate excessive currents, whose intensities depend on the type of battery used. +A lithium ion battery or automobile-type lead-acid battery can deliver a strong enough current to damage the board and, as such, +constitutes a potential hazard. We therefore recommend adding a 1.5-A fuse between the battery and resistor R9. +In version 1.02, we have improved the electronic board of measurement. we have added a DC/DC converter to supply the operational amplifiers +(2 Traco power DC/DCconverter TRN3-1215). These converters allow to limit the suppression of the signal when the injected voltage is higher than 10V. +We also added 4 capacitors on the +12v inputs of the fast operational amplifiers. These are decoupling capacitors (typically 100nF ceramic) +between each power supply terminal and ground. The last point, we have added a four very high resistances of 10 MOhm, between the ground and +the signal input on the operational amplifiers. This prevents the operational amplifiers from overheating.</p> +<figure class="align-center" id="id1"> +<a class="reference internal image-reference" href="_images/schema_measurement_board1_02.png"><img alt="alternate text" src="_images/schema_measurement_board1_02.png" style="width: 800px; height: 400px;" /></a> +<figcaption> +<p><span class="caption-text">Measurement board (Ohmpi version 1.02)</span><a class="headerlink" href="#id1" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +<div class="admonition note"> +<p class="admonition-title">Note</p> +<p>If you want to have very accurate measurements you can replace the resistors with a tolerance of 1% by resistors with a tolerance of 0.01% which will improve the measurement, but the cost will be higher.</p> +</div> +</section> +<section id="b-implementation"> +<h4>b) Implementation<a class="headerlink" href="#b-implementation" title="Permalink to this headline">¶</a></h4> +<p>The measurement board must be printed using the PCB file (Source file repository), with components soldered onto +it by following the steps described below and illustrated in the following figure :</p> +<ul> +<li><dl> +<dt>Step no. 1: test divider bridge</dt><dd><p>For each measurement channel, we have installed a bridge divider, it is necessary to test with ohmmeter the value of the resistances, to adjust each coefficients (coef_p0, coef_p1, coef_p2, coef_p3) in the Ohmpi.py code..</p> +<blockquote> +<div><div class="math notranslate nohighlight"> +\[coeff po = (R1 + R2) / R1\]</div> +<div class="math notranslate nohighlight"> +\[coeff p1 = (R3 + R4) / R3\]</div> +<div class="math notranslate nohighlight"> +\[coeff p2 = (R7 + R6) / R7\]</div> +<div class="math notranslate nohighlight"> +\[coeff p3 = (R9 + R8) / R9\]</div> +<div class="highlight-python notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre><span class="normal">36</span> +<span class="normal">37</span> +<span class="normal">38</span> +<span class="normal">39</span> +<span class="normal">40</span> +<span class="normal">41</span> +<span class="normal">42</span> +<span class="normal">43</span></pre></div></td><td class="code"><div class="highlight"><pre><span></span> <span class="sd">"""</span> +<span class="sd"> hardware parameters</span> +<span class="sd"> """</span> + <span class="n">R_ref</span> <span class="o">=</span> <span class="mi">50</span> <span class="c1"># reference resistance value in ohm</span> + <span class="n">coef_p0</span> <span class="o">=</span> <span class="mf">2.5</span> <span class="c1"># slope for current conversion for ADS.P0, measurement in V/V</span> + <span class="n">coef_p1</span> <span class="o">=</span> <span class="mf">2.5</span> <span class="c1"># slope for current conversion for ADS.P1, measurement in V/V</span> + <span class="n">coef_p2</span> <span class="o">=</span> <span class="mf">2.5</span> <span class="c1"># slope for current conversion for ADS.P2, measurement in V/V</span> + <span class="n">coef_p3</span> <span class="o">=</span> <span class="mf">2.5</span> <span class="c1"># slope for current conversion for ADS.P3, measurement in V/V</span> +</pre></div> +</td></tr></table></div> +<p>The coefficient parameters can be adjusted in lines 40 to 43 of the ohmpi.py code.</p> +</div></blockquote> +</dd> +</dl> +</li> +<li><p>Step no. 2: installation of the 1-Kohm resistors with an accuracy of ± 1% (b-in the figure).</p></li> +<li><p>Step no. 3: installation of the 1.5-Kohm resistors with an accuracy of ± 1%(C-in the figure).</p></li> +<li><p>Step no. 4: installation of both the black female 1 x 10 header and the 7-blue screw terminal blocks (c-in the figure)</p></li> +<li><p>Step no. 5: installation of the 50-Ohm reference resistor ± 0.1%, please check the value and correct the line 39 in ohmpi.py code (d-in the figure)</p></li> +<li><p>Step no. 6: addition of both the ADS115 directly onto the header (pins must be plugged according to the figure) and the LM358N operational amplifiers (pay attention to the orientation) (e-in the figure).</p></li> +<li><p>Step no. 7: installation of the 10-Mohm resistors with an accuracy of ± 5% (f-in the figure).</p></li> +<li><p>Step no. 8: installation of the two DC/DC converter TRN3-1215 (h-in the figure).</p></li> +<li><p>Setp no. 9: installation of the four capacitor on 100-nF/50vDC and the fuse of 10-A (h-in the figure).</p></li> +</ul> +<p>1-Kohm and 1.5-Kohm resistors apply to the divider bridge. If, for example, you prefer using a stronger power supply, it would be possible to adjust the divider bridge value by simply modifying these resistors. +Once all the components have been soldered together, the measurement board can be connected to the Raspberry Pi and the +battery terminal, according to Figure 9. Between the battery and the TX+ terminal of the measurement board, remember to +place a fuse holder with a 1.5-A fuse for safety purposes.</p> +<figure class="align-center" id="id2"> +<a class="reference internal image-reference" href="_images/measurement_board1-02.jpg"><img alt="alternate text" src="_images/measurement_board1-02.jpg" style="width: 800px; height: 700px;" /></a> +<figcaption> +<p><span class="caption-text">Measurement circuit board assembly: a) printed circuit board, b) adding the 1-Kohm resistors ± 1%, c)adding the 1.5-Kohm resistors ± 1%, d) adding the black female 1 x 10 header and the 7-blue screw terminal block(2 pin, 3.5-mm pitch), e) adding the 50-ohm reference resistor ± 0.1%, and f) adding the ADS1115 and the LM358N low-power dual operational amplifiers</span><a class="headerlink" href="#id2" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +<figure class="align-center" id="id3"> +<a class="reference internal image-reference" href="_images/measurement_board-2-V1-02.jpg"><img alt="alternate text" src="_images/measurement_board-2-V1-02.jpg" style="width: 800px; height: 700px;" /></a> +<figcaption> +<p><span class="caption-text">Measurement board installation with Raspberry Pi</span><a class="headerlink" href="#id3" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +</section> +</section> +<section id="current-injection-board"> +<h3>Current injection board<a class="headerlink" href="#current-injection-board" title="Permalink to this headline">¶</a></h3> +<p>To carry out the electrical resistivity measurement, the first step consists of injecting current into the ground. +In our case, a simple 9-V lead-acid battery is used to create an electrical potential difference that results +in current circulating into the ground. The current is injected through electrodes A and B (see Fig. 2). This +injection is controlled via a 4-channel relay module board connected to the Raspberry Pi. The mechanical relay +module board is shown in Figure 4. Relays 1 and 2 serve to switch on the current source. The common contacts +of relays 1 and 2 are connected to the positive and negative battery poles, respectively. The normally open +contacts of both relays are connected to the common contacts of relays 3 and 4. Relays 1 and 2 are connected +to the GPIO 7 on the Raspberry Pi and therefore activate simultaneously. The role of relays 3 and 4 is to reverse +the polarity at electrodes A and B. Thus, when relays 3 and 4 are energized by the GPIO 8 in the open position, +the positive battery pole is connected to electrode A and the negative pole to electrode B. When not energized, +they remain in the normally closed position. This set-up offers a simple and robust solution to inject current.</p> +<figure class="align-center" id="id4"> +<a class="reference internal image-reference" href="_images/current_board.jpg"><img alt="alternate text" src="_images/current_board.jpg" style="width: 800px; height: 400px;" /></a> +<figcaption> +<p><span class="caption-text">Wiring of the 4-channel relay module board for current injection management</span><a class="headerlink" href="#id4" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +<p>The next step consists of featuring the 4-channel relay module used for current injection and its assembly. The wiring +between the relays must be carried out in strict accordance with Fig. 10. This card must then be connected to the Raspberry +Pi and the measurement card. On the Raspberry Pi, it is necessary to connect inputs In1 and In2 to the same GPIO. For this +purpose, it is necessary to solder together the two pins on the 4-channel relay shield module and connect them to the Raspberry Pi GPIO-7 (Fig. 10). The same must be performed for inputs In3 and In4 with GPIO-8. Connect the GND and 5Vdc pins of +the relay card’s 4 channels respectively to the GND pin and 5Vcc of the Raspberry Pi. Now connect relays 1, 2, 3 and 4, as +shown in the diagram, using 1-mm2 cables (red and black in Fig. 10). Lastly, connect the inputs of relay 1 and 2 respectively +to terminals B and A of the measurement board.</p> +<figure class="align-center" id="id5"> +<a class="reference internal image-reference" href="_images/installation_current_board_1_02.jpg"><img alt="alternate text" src="_images/installation_current_board_1_02.jpg" style="width: 800px; height: 700px;" /></a> +<figcaption> +<p><span class="caption-text">Current injection board installation with Raspberry Pi</span><a class="headerlink" href="#id5" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +<p>Congratulations, you have build a 4 electrodes resistivity-meter.</p> +</section> +<section id="frist-four-electrodes-resistivity-mesurement"> +<h3>Frist four electrodes resistivity mesurement<a class="headerlink" href="#frist-four-electrodes-resistivity-mesurement" title="Permalink to this headline">¶</a></h3> +<p>Under construction !</p> +<p>Describe the way to valide the first part of the instruction. +Electrical resistivity measurement on test circuit</p> +</section> +</section> +<section id="multiplexer-implentation"> +<h2>Multiplexer implentation<a class="headerlink" href="#multiplexer-implentation" title="Permalink to this headline">¶</a></h2> +<p>The resistivity measurement is conducted on four terminals (A, B, M and N). The user could perform each measurement +by manually plugging four electrodes into the four channel terminals. In practice, ERT requires several tens or thousands +of measurements conducted on different electrode arrays. A multiplexer is therefore used to connect each channel to one of +the 32 electrodes stuck into the ground, all of which are connected to the data logger.</p> +<p>We will describe below how to assemble the four multiplexers (MUX), one per terminal. A multiplexer consists of 2 relay +modules with 16 channels each. On the first board, on each MUX, 15 relays out of the 16 available will be used. Please note that the suggested +configuration enables making smaller multiplexers (8 or 16 electrodes only). On the other hand, if you prefer upping to 64 electrodes, +which is entirely possible, a GPIO channel multiplier will have to be used. +To prepare the multiplexer, the channels of the two relay boards must be connected according to the wiring diagram shown below.</p> +<figure class="align-center" id="id6"> +<a class="reference internal image-reference" href="_images/multiplexer_implementation.jpg"><img alt="alternate text" src="_images/multiplexer_implementation.jpg" style="width: 800px; height: 500px;" /></a> +<figcaption> +<p><span class="caption-text">Schematic diagram of the wiring of two 16-channel relay shields</span><a class="headerlink" href="#id6" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +<p>For this purpose, 0.5-mm² cables with end caps are used and their length adjusted for each connection in order to produce a clean assembly. +The length was adjusted so that the distance between the two points to be connected could be directly measured on the board once they had +been assembled one above the other, in adding an extra 3 cm. The wires at the ends need to be stripped and the end caps added. +As a final step, connect the cables to the correct connectors. This operation must be repeated in order to carry out all the wiring shown in Figure below.</p> +<p>Once the operation has been completed, the 16 control pins of each 16-channel relay shield card must be prepared. Each card actually contains 16 input channels +for activating each relay (Fig. 12). However, we will be activating several relays with a single GPIO (to limit the number of GPIOs used on Raspberry Pi, +see Section 2.4). To execute this step, it will be necessary to follow the protocol presented in Figure.</p> +<blockquote> +<div><figure class="align-center" id="id7"> +<a class="reference internal image-reference" href="_images/connection.jpg"><img alt="alternate text" src="_images/connection.jpg" style="width: 800px; height: 400px;" /></a> +<figcaption> +<p><span class="caption-text">Connection to the 16-channel relay shield</span><a class="headerlink" href="#id7" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +</div></blockquote> +<p>For the 16-channel relay shield no. 1, these steps must be followed: +* Position a test circuit with 10 horizontal and 10 vertical holes on the pins of the 16-channel relay shield board. +* Follow the diagram and solder the pins as shown in Fig. +* Lastly, solder 0.5-mm² wires 1 m in length to the test circuit.</p> +<p>For relay shield no. 2, follow the same procedure, but solder all the pins together (d-e-f). +This same operation must be repeated for the other three multiplexers as well. +The next step consists of connecting the relay card inputs to the Raspberry Pi according to Table 5 for all four multiplexers.</p> +<table class="docutils align-default"> +<colgroup> +<col style="width: 34%" /> +<col style="width: 11%" /> +<col style="width: 11%" /> +<col style="width: 11%" /> +<col style="width: 11%" /> +<col style="width: 23%" /> +</colgroup> +<tbody> +<tr class="row-odd"><td rowspan="2"></td> +<td colspan="4"><p>Relay shield n°1</p></td> +<td><p>Relay Shield n°2</p></td> +</tr> +<tr class="row-even"><td><p>Pin 1</p></td> +<td><p>Pin 2-3</p></td> +<td><p>Pin 4-7</p></td> +<td><p>Pin 8-16</p></td> +<td><p>Pin 1- 16</p></td> +</tr> +<tr class="row-odd"><td><p>Multiplexer A</p></td> +<td><p>12</p></td> +<td><p>16</p></td> +<td><p>20</p></td> +<td><p>21</p></td> +<td><p>26</p></td> +</tr> +<tr class="row-even"><td><p>Multiplexer B</p></td> +<td><p>18</p></td> +<td><p>23</p></td> +<td><p>24</p></td> +<td><p>25</p></td> +<td><p>19</p></td> +</tr> +<tr class="row-odd"><td><p>Multiplexer M</p></td> +<td><p>06</p></td> +<td><p>13</p></td> +<td><p>04</p></td> +<td><p>17</p></td> +<td><p>27</p></td> +</tr> +<tr class="row-even"><td><p>Multiplexer N</p></td> +<td><p>22</p></td> +<td><p>10</p></td> +<td><p>09</p></td> +<td><p>11</p></td> +<td><p>05</p></td> +</tr> +</tbody> +</table> +<blockquote> +<div><p>Connection of the GPIOs to each multiplexer</p> +</div></blockquote> +</section> +<section id="electrode-connection"> +<h2>Electrode connection<a class="headerlink" href="#electrode-connection" title="Permalink to this headline">¶</a></h2> +<p>At this point, all that remains is to connect the electrodes of each multiplexer to a terminal block (Fig. 13). In our set-up, screw terminals assembled on a din rail were used. +According to the chosen multiplexer configuration, all the relays of each multiplexer will be connected to an electrode and, consequently, each electrode will have four incoming +connections. Instead of having four cables connecting an electrode terminal to each multiplexer, we recommend using the cable assembly shown in the following Figure.</p> +<figure class="align-center" id="id8"> +<a class="reference internal image-reference" href="_images/cable.jpg"><img alt="alternate text" src="_images/cable.jpg" style="width: 800px; height: 300px;" /></a> +<figcaption> +<p><span class="caption-text">Wire cabling for multiplexer and terminal screw connection</span><a class="headerlink" href="#id8" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +<p>the next figure provides an example of multiplexer relay connections for electrode no. 1: this electrode of multiplexer MUX A must be connected to electrode no. 1 of MUX B. Moreover, electrode no. 1 of MUX B +must be connected to electrode no. 1 of MUX N, which in turn must be connected to electrode no. 1 of MUX M. Lastly, electrode no. 1 of MUX M is connected to the terminal block. +This operation must be repeated for all 32 electrodes.</p> +<figure class="align-center" id="id9"> +<a class="reference internal image-reference" href="_images/electrode_cable.jpg"><img alt="alternate text" src="_images/electrode_cable.jpg" style="width: 800px; height: 800px;" /></a> +<figcaption> +<p><span class="caption-text">Example of a multiplexer connection to the screw terminal for electrode no. 1.</span><a class="headerlink" href="#id9" title="Permalink to this image">¶</a></p> +</figcaption> +</figure> +<div class="admonition warning"> +<p class="admonition-title">Warning</p> +<p>The 16 channel relay cards exist in 5-V and 12-V , in the bottom figure we have 12-V cards that we will directly connect to the battery. +In case you bought 16 channel relay 5-V cards, you will need to add a DC/DC 12-V/5-V converter. You can use a STEP DOWN MODULE DC-DC (Velleman WPM404) and set the voltage to 5V with the potentiometer.</p> +</div> +</section> +<section id="operating-instruction"> +<h2>Operating instruction<a class="headerlink" href="#operating-instruction" title="Permalink to this headline">¶</a></h2> +<section id="preliminary-procedure-only-for-the-initial-operation"> +<h3>Preliminary procedure (Only for the initial operation)<a class="headerlink" href="#preliminary-procedure-only-for-the-initial-operation" title="Permalink to this headline">¶</a></h3> +<p>The open source code must be downloaded at the Open Science Framework source file repository for this manuscript (<a class="reference external" href="https://osf.io/dzwb4/">https://osf.io/dzwb4/</a>) +or at the following Gitlab repository address: <a class="reference external" href="https://gitlab.irstea.fr/reversaal/OhmPi">https://gitlab.irstea.fr/reversaal/OhmPi</a>. The code must be then unzipped into a selected folder (e.g. OhmPi-master). A “readme†file +is proposed in the directory to assist with installation of the software and required python packages. It is strongly recommended to create a python virtual environment for installing +the required packages and running the code.</p> +</section> +<section id="startup-procedure"> +<h3>Startup procedure<a class="headerlink" href="#startup-procedure" title="Permalink to this headline">¶</a></h3> +<p>As an initial operating instruction, all batteries must be disconnected before any hardware handling. Ensure that the battery is charged at full capacity. Plug all the electrodes (32 or fewer) +into the screw terminals. The Raspberry Pi must be plugged into a computer screen, with a mouse and keyboard accessed remotely. The Raspberry Pi must then be plugged into the power supply +(for laboratory measurements) or a power bank (5V - 2A for field measurements). At this point, you’ll need to access the Raspbian operating system. Inside the previously created folder “ohmPiâ€, +the protocol file “ABMN.txt†must be created or modified; this file contains all quadrupole ABMN numeration (an example is proposed with the source code). Some input parameters of the main “ohmpi.py†+function may be adjusted/optimized depending on the measurement attributes. For example, both the current injection duration and number of stacks can be adjusted. At this point, the9 V and 12-V battery can be +plugged into the hardware; the “ohmpi.py†source code must be run within a python3 environment (or a virtual environment if one has been created) either in the terminal or using Thonny. You should now +hear the characteristic sound of a relay switching as a result of electrode permutation. After each quadrupole measurement, the potential difference as well as the current intensity and resistance +are displayed on the screen. A measurement file is automatically created and named “measure.csvâ€; it will be placed in the same folder.</p> +</section> +<section id="electrical-resistivity-measurement-parameters-description"> +<h3>Electrical resistivity measurement parameters description<a class="headerlink" href="#electrical-resistivity-measurement-parameters-description" title="Permalink to this headline">¶</a></h3> +<p>In the version 1.02, the measurement parameters are in the Jason file (ohmpi_param.json).</p> +<div class="highlight-python notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre><span class="normal">1</span> +<span class="normal">2</span> +<span class="normal">3</span> +<span class="normal">4</span> +<span class="normal">5</span> +<span class="normal">6</span></pre></div></td><td class="code"><div class="highlight"><pre><span></span> <span class="n">nb_electrodes</span> <span class="o">=</span> <span class="mi">32</span> <span class="c1"># maximum number of electrodes on the resistivity meter</span> + <span class="n">injection_duration</span> <span class="o">=</span> <span class="mf">0.5</span> <span class="c1"># Current injection duration in second</span> + <span class="n">nbr_meas</span><span class="o">=</span> <span class="mi">1</span> <span class="c1"># Number of times the quadripole sequence is repeated</span> + <span class="n">sequence_delay</span><span class="o">=</span> <span class="mi">30</span> <span class="c1"># Delay in seconds between 2 sequences</span> + <span class="n">stack</span><span class="o">=</span> <span class="mi">1</span> <span class="c1"># repetition of the current injection for each quadripole</span> + <span class="n">export_path</span><span class="o">=</span> <span class="s2">"home/pi/Desktop/measurement.csv"</span> +</pre></div> +</td></tr></table></div> +</section> +</section> +<section id="complete-list-of-components"> +<h2>Complete list of components<a class="headerlink" href="#complete-list-of-components" title="Permalink to this headline">¶</a></h2> +<div class="admonition warning"> +<p class="admonition-title">Warning</p> +<p>The list evolve a little bit after the publication of the article, it is necessary to refer to this list, the article is out of date</p> +</div> +</section> +</section> + + + </div> + + </div> + <footer> + + <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation"> + + + <a href="V1_02.html" class="btn btn-neutral float-left" title="OhmPi V 1.02 (limited to 32 electrodes)" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a> + + </div> + + + <hr/> + + <div role="contentinfo"> + <p> + + © Copyright 2020, INRAE, Rémi CLEMENT + + </p> + </div> + + + + Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a + + <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> + + provided by <a href="https://readthedocs.org">Read the Docs</a>. + +</footer> + + </div> + </div> + + </section> + + </div> + + + <script type="text/javascript"> + jQuery(function () { + SphinxRtdTheme.Navigation.enable(true); + }); + </script> + + + + + + +</body> +</html> \ No newline at end of file diff --git a/sphinx/build/html/_sources/V1_01.rst.txt b/sphinx/build/html/_sources/V1_01.rst.txt index ecec806040574eeb9978b35f6ab1f155e2dee0b6..877b4bd6f13852db79f164e4cba063fe43c59165 100644 --- a/sphinx/build/html/_sources/V1_01.rst.txt +++ b/sphinx/build/html/_sources/V1_01.rst.txt @@ -5,7 +5,7 @@ OhmPi V 1.01 (limited to 32 electrodes) .. warning:: This version corresponds to the version published in the Hardware X journal. However, we have corrected the bugs that existed on this version and explained the missing mounting points in detail below. - We invite you to refer to this document to assemble Ohmpi. + We invite you to refer to this document to assemble Ohmpi V1.01. diff --git a/public/_sources/V2_00.rst.txt b/sphinx/build/html/_sources/V2_00.rst.txt similarity index 99% rename from public/_sources/V2_00.rst.txt rename to sphinx/build/html/_sources/V2_00.rst.txt index 8bc01da4892f617a14194c87ecf17301d9b720c8..504003422002a50608a2a0e67b81a7c3497b2db9 100644 --- a/public/_sources/V2_00.rst.txt +++ b/sphinx/build/html/_sources/V2_00.rst.txt @@ -1,14 +1,16 @@ ***************************************** -OhmPi V 1.02 (limited to 32 electrodes) +OhmPi V 2.00 (64 or 128 électrodes) ***************************************** -.. note:: - - In this version, we have improved the electronic measurement board. To upgrade from version 1.01 to 1.02, you just have to replace the measurement board by the new one proposed here. - + +.. note:: + + In this version, we have improved the electronic measurement board. To upgrade from version 1.01 to 1.02, + you just have to replace the measurement board by the new one proposed here. + The philosophy of Ohmpi ************************** The philosophy of Ohmpi V1.01 is to offer a multi electrode resistivity meter, from a set of commercially available diff --git a/sphinx/build/html/_sources/index.rst.txt b/sphinx/build/html/_sources/index.rst.txt index d2aaf8480ab6fda2b9f2e7a78f644653b80ef947..eb2e4bcc3e69d04a849671c7f30b586ca5bc25e5 100644 --- a/sphinx/build/html/_sources/index.rst.txt +++ b/sphinx/build/html/_sources/index.rst.txt @@ -34,6 +34,7 @@ Contents: Ohmpi V1_01 V1_02 + V2_00 diff --git a/sphinx/build/html/_static/pygments.css b/sphinx/build/html/_static/pygments.css index 631bc92ffa57bc202c1dac78d96bbeaea624571e..582d5c3adaddbab2178a4e1ea270afe51e5437d2 100644 --- a/sphinx/build/html/_static/pygments.css +++ b/sphinx/build/html/_static/pygments.css @@ -1,5 +1,10 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } .highlight .hll { background-color: #ffffcc } -.highlight { background: #f8f8f8; } +.highlight { background: #f8f8f8; } .highlight .c { color: #408080; font-style: italic } /* Comment */ .highlight .err { border: 1px solid #FF0000 } /* Error */ .highlight .k { color: #008000; font-weight: bold } /* Keyword */ diff --git a/sphinx/build/html/genindex.html b/sphinx/build/html/genindex.html index a36aeebe725209c6247072beda87796a27fae559..b34a403e29a80aa97d4acac4bcedfa9519346132 100644 --- a/sphinx/build/html/genindex.html +++ b/sphinx/build/html/genindex.html @@ -85,6 +85,7 @@ <li class="toctree-l1"><a class="reference internal" href="Ohmpi.html">OhmPi project</a></li> <li class="toctree-l1"><a class="reference internal" href="V1_01.html">OhmPi V 1.01 (limited to 32 electrodes)</a></li> <li class="toctree-l1"><a class="reference internal" href="V1_02.html">OhmPi V 1.02 (limited to 32 electrodes)</a></li> +<li class="toctree-l1"><a class="reference internal" href="V2_00.html">OhmPi V 2.00 (64 or 128 électrodes)</a></li> </ul> diff --git a/sphinx/build/html/index.html b/sphinx/build/html/index.html index a6f0bead716a16397ad7ed42b71cc7cf12e50b7e..a9bf70b7857ad53c0a5f2e875c22e36719ff0716 100644 --- a/sphinx/build/html/index.html +++ b/sphinx/build/html/index.html @@ -4,7 +4,8 @@ <html class="writer-html5" lang="en" > <head> <meta charset="utf-8"> - + <meta name="generator" content="Docutils 0.17: http://docutils.sourceforge.net/" /> + <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>OHMPI: Open source and open hardware resitivity-meter — Ohmpi: open hardware resistivity-meter documentation</title> @@ -86,6 +87,7 @@ <li class="toctree-l1"><a class="reference internal" href="Ohmpi.html">OhmPi project</a></li> <li class="toctree-l1"><a class="reference internal" href="V1_01.html">OhmPi V 1.01 (limited to 32 electrodes)</a></li> <li class="toctree-l1"><a class="reference internal" href="V1_02.html">OhmPi V 1.02 (limited to 32 electrodes)</a></li> +<li class="toctree-l1"><a class="reference internal" href="V2_00.html">OhmPi V 2.00 (64 or 128 électrodes)</a></li> </ul> @@ -151,16 +153,16 @@ <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> <div itemprop="articleBody"> - <div class="section" id="ohmpi-open-source-and-open-hardware-resitivity-meter"> + <section id="ohmpi-open-source-and-open-hardware-resitivity-meter"> <h1>OHMPI: Open source and open hardware resitivity-meter<a class="headerlink" href="#ohmpi-open-source-and-open-hardware-resitivity-meter" title="Permalink to this headline">¶</a></h1> -<div class="sidebar"> +<aside class="sidebar"> <p class="sidebar-title">Summary</p> <dl class="field-list simple"> <dt class="field-odd">Release</dt> <dd class="field-odd"><p>open hardware resistivity-meter</p> </dd> <dt class="field-even">Date</dt> -<dd class="field-even"><p>Dec 21, 2020</p> +<dd class="field-even"><p>Jul 14, 2021</p> </dd> <dt class="field-odd">Date start</dt> <dd class="field-odd"><p>July 2016</p> @@ -175,7 +177,7 @@ <dd class="field-even"><p>some mature, some in progress</p> </dd> </dl> -</div> +</aside> <div class="topic"> <p class="topic-title">OhmPi Document Center</p> <ul class="simple"> @@ -214,9 +216,20 @@ <li class="toctree-l2"><a class="reference internal" href="V1_02.html#complete-list-of-components">Complete list of components</a></li> </ul> </li> +<li class="toctree-l1"><a class="reference internal" href="V2_00.html">OhmPi V 2.00 (64 or 128 électrodes)</a><ul> +<li class="toctree-l2"><a class="reference internal" href="V2_00.html#the-philosophy-of-ohmpi">The philosophy of Ohmpi</a></li> +<li class="toctree-l2"><a class="reference internal" href="V2_00.html#technical-data">Technical data</a></li> +<li class="toctree-l2"><a class="reference internal" href="V2_00.html#raspberry-pi-configuration">Raspberry Pi configuration</a></li> +<li class="toctree-l2"><a class="reference internal" href="V2_00.html#assembly-of-the-measuring-current-injection-cards-and-connection-with-the-raspberry-pi">Assembly of the measuring/current injection cards, and connection with the Raspberry Pi</a></li> +<li class="toctree-l2"><a class="reference internal" href="V2_00.html#multiplexer-implentation">Multiplexer implentation</a></li> +<li class="toctree-l2"><a class="reference internal" href="V2_00.html#electrode-connection">Electrode connection</a></li> +<li class="toctree-l2"><a class="reference internal" href="V2_00.html#operating-instruction">Operating instruction</a></li> +<li class="toctree-l2"><a class="reference internal" href="V2_00.html#complete-list-of-components">Complete list of components</a></li> +</ul> +</li> </ul> </div> -</div> +</section> </div> diff --git a/sphinx/build/html/objects.inv b/sphinx/build/html/objects.inv index 24b41f4783bf0e931ce294070d61de4d320b133a..b9fc38a78a04c5cbb3ecb4ffbc562fc21525e4af 100644 Binary files a/sphinx/build/html/objects.inv and b/sphinx/build/html/objects.inv differ diff --git a/sphinx/build/html/search.html b/sphinx/build/html/search.html index e7bba42211069dcc0ef77a3fcd07538eb9a0d4d0..2e2413516d55185e9f0ea0cb29887b829e1a6e7e 100644 --- a/sphinx/build/html/search.html +++ b/sphinx/build/html/search.html @@ -87,6 +87,7 @@ <li class="toctree-l1"><a class="reference internal" href="Ohmpi.html">OhmPi project</a></li> <li class="toctree-l1"><a class="reference internal" href="V1_01.html">OhmPi V 1.01 (limited to 32 electrodes)</a></li> <li class="toctree-l1"><a class="reference internal" href="V1_02.html">OhmPi V 1.02 (limited to 32 electrodes)</a></li> +<li class="toctree-l1"><a class="reference internal" href="V2_00.html">OhmPi V 2.00 (64 or 128 électrodes)</a></li> </ul> diff --git a/sphinx/build/html/searchindex.js b/sphinx/build/html/searchindex.js index 97ec4d7972e224644f214529682a81c1eadc925f..283a2879aaf70b38bf26d4e6692ce4c636feac5d 100644 --- a/sphinx/build/html/searchindex.js +++ b/sphinx/build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["Ohmpi","V1_01","V1_02","index"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":1,sphinx:56},filenames:["Ohmpi.rst","V1_01.rst","V1_02.rst","index.rst"],objects:{},objnames:{},objtypes:{},terms:{"100nf":2,"10v":2,"12v":[1,2],"1x0":[1,2],"1x1":[1,2],"1x10":[1,2],"24v":2,"50vdc":2,"5vcc":[1,2],"5vdc":[1,2],"7ah":[1,2],"ao\u00fbt":0,"case":[1,2],"final":[1,2],"function":[0,1,2],"h\u00e9l\u00e8ne":[0,3],"mm\u00b2":[1,2],"new":[1,2],"orl\u00e9an":0,"public":[1,2],"r\u00e9mi":[0,3],"return":[1,2],"switch":[1,2],"universit\u00e9":0,"vid\u00e9o":[1,2],ADS:[1,2],CMS:[1,2],For:[1,2],IGE:0,Its:[1,2],The:3,These:[1,2],With:[1,2],abmn:[1,2],abov:[1,2],acc:[1,2],access:[1,2],accord:[1,2],accur:[1,2],accuraci:[1,2],acid:[1,2],actual:[1,2],adafruit:[1,2],adapt:[1,2],adc:[1,2],add:[1,2],added:[1,2],adding:[1,2],addit:[1,2],address:[1,2],adjust:[1,2],ads1115:[1,2],ads115:[1,2],ads1x15:[1,2],after:[1,2],all:[1,2],allow:[0,1,2],alp:0,also:[1,2],altern:[1,2],amp:[1,2],amplifi:[1,2],analog:[1,2],ani:[1,2],anoth:[1,2],appear:[1,2],appli:[1,2],applic:0,apt:[1,2],arduino:1,arm:1,arrai:[1,2],articl:[1,2],asler:[1,2],assembl:3,assist:[1,2],associ:0,attent:[1,2],attribut:[1,2],author:[0,1,2,3],automat:[0,1,2],automobil:[1,2],avail:[1,2],avr:1,bank:[1,2],base:[1,2],basic:0,batteri:[1,2],been:[1,2],befor:[1,2],behavior:[1,2],being:[1,2],below:[1,2],between:[1,2],bin:[1,2],bit:[1,2],black:[1,2],blinka:[1,2],block:[1,2],blue:[1,2],boot:[1,2],both:[1,2],bottom:[1,2],bought:[1,2],bridg:[1,2],bug:1,build:[1,2],button:[1,2],c320c104k1:2,cabl:[1,2],calcul:[1,2],calibr:[1,2],call:0,can:[1,2],canal:1,cap:[1,2],capac:[1,2],capacitor:2,car:1,card:3,carri:[1,2],caus:[1,2],cedex:0,ceram:2,channel:[1,2],characterist:[1,2],charg:[1,2],check:[1,2],chosen:[1,2],circuit:[1,2],circuitpython:[1,2],circul:[1,2],clean:[1,2],clement:[0,3],click:[1,2],close:[1,2],code:[1,2],coef_p0:[1,2],coef_p1:[1,2],coef_p2:[1,2],coef_p3:[1,2],coeff:[1,2],coeffici:[1,2],com:[1,2],command:[1,2],commerci:[1,2],common:[1,2],commun:0,complet:3,compon:3,comput:[1,2],conduct:[1,2],config:[1,2],configur:3,congratul:[1,2],connect:3,connector:[1,2],consequ:[1,2],consist:[1,2],constitut:[1,2],construct:[1,2],consumpt:[1,2],contact:[1,2],contain:[1,2],content:3,control:[1,2],convers:[1,2],convert:[1,2],correct:[1,2],correspond:1,cost:[0,1,2],could:[1,2],cpu:[1,2],creat:[1,2],creation:0,crimp:[1,2],csv:[1,2],ctrl:[1,2],current:[0,3],damag:[1,2],data:[0,3],date:[0,1,2,3],dcconvert:2,deactiv:[1,2],dec:3,decid:[1,2],decoupl:2,dedic:0,delai:[1,2],deliv:[1,2],depend:[1,2],describ:[1,2],design:[1,2],desktop:2,despit:[1,2],detail:1,dev:[1,2],develop:[0,1,2,3],diagram:[1,2],differ:[1,2],digit:[1,2],din:[1,2],direct:[1,2],directli:[1,2],directori:[1,2],disconnect:[1,2],displai:[1,2],distanc:[1,2],disturb:[1,2],divid:[1,2],document:[0,1],done:[1,2],down:[1,2],download:[1,2],dsp:1,dual:[1,2],duboi:[0,3],durat:[1,2],dure:[1,2],dzwb4:[1,2],e00122ff:0,each:[1,2],editor:[1,2],eiffel:0,either:[1,2],electr:0,electrod:[0,3],electron:[1,2],elsevi:0,emil:0,enabl:[1,2],end:[1,2],energ:[1,2],enough:[1,2],ensur:[1,2],enter:[1,2],entir:[1,2],environ:[1,2],environnementshould:[1,2],equal:[1,2],equival:[1,2],ert:[1,2],escap:[1,2],estim:[1,2],everyon:0,evolv:[1,2],exampl:[1,2],excess:[1,2],execut:[1,2],exist:[1,2],experi:[0,1,2],explain:1,export_path:2,extra:[1,2],failur:[1,2],fargier:[0,3],fast:2,featur:[1,2],femal:[1,2],ferrul:[1,2],fewer:[1,2],ff10:0,fhac0002zxj:1,field:[1,2],fig:[1,2],figur:[1,2],file:[1,2],find:[1,2],first:[1,2],flexibl:0,florsch:[1,2],flow:[1,2],folder:[1,2],follow:[1,2],forquet:[0,3],framework:[1,2],franc:0,from:[1,2],full:[1,2],fulli:0,fuse:[1,2],gain:[1,2],ganc:[0,3],gather:[1,2],gener:[1,2,3],ger:0,get:[0,1,2],gitlab:[1,2],gnd:[1,2],gnu:[1,2],gpio:[1,2],grenobl:0,gro:0,ground:[1,2],gui:[1,2],guidelin:3,gustav:0,guyard:[0,3],h81k0bya:[1,2],h81k5bya:[1,2],had:[1,2],hand:[1,2],handl:[1,2],hardwar:[0,1,2],hardwarex:0,has:[1,2],have:[1,2],hazard:[1,2],header:[1,2],hear:[1,2],here:2,high:[1,2],higher:2,holder:[1,2],hole:[1,2],home:[1,2],horizont:[1,2],hous:[1,2],how:[1,2],howev:[1,2],http:[1,2],ifsttar:0,illustr:[1,2],imag:0,imped:[1,2],implent:3,improv:2,in1:[1,2],in2:[1,2],in3:[1,2],in4:[1,2],includ:[1,2],incom:[1,2],increas:[1,2],inde:[1,2],inject:[0,3],injection_dur:[1,2],input:[1,2],inra:0,insert:[1,2],insid:[1,2],instead:[1,2],instruct:3,instrument:[0,1,2],intens:[1,2],interfac:[1,2],interpret:[1,2],introduc:[1,2],invit:1,involv:0,ion:[1,2],iri:0,irstea:[1,2],its:[1,2],jason:2,journal:1,json:2,juillet:0,juli:3,julien:[0,3],just:2,kemet:2,keyboard:[1,2],known:[1,2],kohm:[1,2],laboratori:[0,1,2],last:2,lastli:[1,2],latest:[1,2],lead:[1,2],leav:[1,2],length:[1,2],less:[1,2],let:[1,2],libatla:[1,2],librari:[1,2],lie:[1,2],limit:3,line:[1,2],list:3,lithium:[1,2],littelfus:[1,2],littl:[1,2],lm358an:[1,2],lm358n:[1,2],locat:[1,2],logger:[0,1,2],low:[0,1,2],lr20:[1,2],lying:[1,2],lyon:0,made:[1,2],mai:[1,2],main:[1,2],make:[1,2],manag:[1,2],manual:[1,2],manufactur:[1,2],manuscript:[1,2],master:[1,2],matur:3,maximum:[1,2],measur:[0,3],mechan:[1,2],meet:[1,2],mega:[1,2],menu:[1,2],met:[1,2],meter:[0,1,2],meterfeatur:0,micro:[1,2],mimic:[1,2],min:[1,2],miss:1,mm2:[1,2],model:[1,2],modif:[1,2],modifi:[1,2],modul:[1,2],mohm:[1,2],monitor:[1,2],moreov:[1,2],mount:[1,2],mous:[1,2],multi:[1,2],multiplex:[0,3],multipli:[1,2],must:[1,2],mux:[1,2],name:[1,2],nano:[1,2],nb_electrod:[1,2],nbr_mea:[1,2],necessari:[1,2],need:[1,2],neg:[1,2],next:[1,2],nicola:[0,3],noob:[1,2],nopb:[1,2],normal:[1,2],note:[1,2],now:[1,2],number:[1,2],numer:[1,2],numpi:[1,2],obtain:[1,2],offcial:3,offer:[1,2],ohm:[1,2],ohmmet:[1,2],ohmpi_param:2,ohx:0,onc:[1,2],one:[1,2],onto:[1,2],open:[0,1,2],oper:3,optim:[1,2],option:[1,2],order:[1,2],orient:2,osf:[1,2],other:[1,2],our:[1,2],out:[1,2],output:[1,2],overh:2,pai:[1,2],panda:[1,2],part:[1,2],parten:0,partenair:3,pat1l:2,path:[1,2],pcb:[1,2],per:[1,2],perform:[0,1,2],permut:[1,2],philosophi:[0,3],pic:1,piec:[1,2],pin:[1,2],pip:[1,2],pitch:[1,2],place:[1,2],pleas:[1,2],plug:[1,2],point:[1,2],polar:[1,2],pole:[1,2],posit:[1,2],possibl:[1,2],potenti:[1,2],potentiomet:[1,2],pour:1,power:[1,2],practic:[1,2],precis:[1,2],prefer:[1,2],prepar:[1,2],present:[0,1,2],press:[1,2],prevent:2,previous:[1,2],print:[1,2],pro:[1,2],produc:[1,2],program:[1,2],progress:[0,3],project:3,propos:[1,2],protocol:[1,2],provid:[0,1,2],publish:1,puls:[1,2],purpos:[1,2],pyhton3:[1,2],python3:[1,2],pythonid:[1,2],quadripol:[1,2],quadrupol:[1,2],quantiti:[1,2],r10:[1,2],r11:[1,2],r12:[1,2],r_ref:[1,2],rail:[1,2],rang:[1,2],raspberri:3,raspbian:[1,2],raspebrri:[1,2],readm:[1,2],recommend:[1,2],red:[1,2],reduct:[1,2],refer:[1,2],relai:[1,2],releas:3,remain:[1,2],rememb:[1,2],remot:[1,2],repeat:[1,2],repetit:[1,2],replac:2,repositori:[1,2],repres:[1,2],requir:[1,2],research:3,resist:[0,3],resistor:[1,2],resolut:[1,2],respect:[1,2],result:[1,2],revers:[1,2],reversa:[0,1,2],robust:[0,1,2],role:[1,2],root:[1,2],rpi:[1,2],rro:0,run:[1,2],safeti:[1,2],sain:[1,2],sainsmart:[1,2],same:[1,2],samtec:[1,2],save:[1,2],scale:0,schemat:[1,2],scienc:[1,2],scientif:0,screen:[1,2],screw:[1,2],second:[1,2],section:[1,2],see:[1,2],select:[1,2],sequenc:[1,2],sequence_delai:[1,2],seri:[1,2],serv:[1,2],set:[1,2],setp:2,setup:[1,2],sever:[1,2],shield:[1,2],shortcut:[1,2],should:[1,2],show:[1,2],shown:[1,2],signal:[1,2],simpl:[1,2],simpli:[1,2],simultan:[1,2],singl:[1,2],slope:[1,2],small:[0,1,2],smaller:[1,2],smart:[1,2],softwar:[1,2],soil:[1,2],solder:[1,2],solut:[1,2],some:[1,2,3],sound:[1,2],sourc:[0,1,2],specif:[1,2],specifi:[1,2],spi:[1,2],ssw:[1,2],stabl:[1,2],stack:[1,2],stainless:[1,2],start:[1,2,3],statu:[0,3],steel:[1,2],step:[1,2],still:[1,2],storag:[1,2],strict:[1,2],strip:[1,2],strong:[1,2],stronger:[1,2],strongli:[1,2],stuck:[1,2],studi:[1,2],subject:[1,2],sudo:[1,2],suffici:[1,2],suggest:[1,2],suitabl:[1,2],sum:[1,2],suppli:[1,2],suppress:2,sure:[1,2],surfac:0,system:[1,2],tab:[1,2],tabl:2,target:3,task:[1,2],technic:3,temperatur:[1,2],ten:[1,2],termin:[1,2],test:[1,2],texa:[1,2],than:[1,2],the9:[1,2],thei:[1,2],them:[1,2],therefor:[1,2],thi:[0,1,2],thousand:[1,2],three:[1,2],through:[1,2],thu:[1,2],time:[1,2],togeth:[1,2],toler:2,tool:0,total:[1,2],track:[1,2],traco:2,tracopow:2,trn3:2,trn:2,tru:[1,2],turn:[1,2],tutori:3,two:[1,2],txt:[1,2],type:[1,2],typic:[1,2],under:[1,2],unexpectedli:[1,2],unit:[1,2],univ:0,unzip:[1,2],updat:0,upgrad:2,upping:[1,2],upw50b50rv:[1,2],use:[1,2],used:[1,2],user:[1,2,3],using:[1,2],usr:[1,2],valid:[1,2],valu:[1,2],variou:[1,2],velleman:[1,2],venv:[1,2],veri:2,version:[1,2],vertic:[1,2],via:[1,2],villeurbann:0,vivien:[0,3],voltag:[1,2],voltmet:[1,2],wai:[1,2],want:2,watch:[1,2],weaker:1,websit:[1,2],weidmul:[1,2],welcom:0,well:[1,2],were:[1,2],when:[1,2],where:[1,2],which:[1,2],whose:[1,2],willing:0,window:[1,2],wire:[1,2],within:[1,2],without:[1,2],wjwzhv1v3pk:[1,2],would:[1,2],wpm404:[1,2],write:[1,2],www:[1,2],yannick:[0,3],you:[1,2],your:[1,2],youtub:[1,2]},titles:["OhmPi project","OhmPi V 1.01 (limited to 32 electrodes)","OhmPi V 1.02 (limited to 32 electrodes)","OHMPI: Open source and open hardware resitivity-meter"],titleterms:{IDE:[1,2],The:[1,2],activ:[1,2],assembl:[1,2],board:[1,2],card:[1,2],center:3,cite:0,complet:[1,2],compon:[1,2],configur:[1,2],connect:[1,2],current:[1,2],data:[1,2],descript:[1,2],document:3,electr:[1,2],electrod:[1,2],environn:[1,2],four:[1,2],frist:[1,2],hardwar:3,implement:[1,2],implent:[1,2],initi:[1,2],inject:[1,2],instal:[1,2],instruct:[1,2],introduct:0,limit:[1,2],list:[1,2],measur:[1,2],mesur:[1,2],meter:3,multiplex:[1,2],ohmpi:[0,1,2,3],onli:[1,2],open:3,oper:[1,2],packag:[1,2],paramet:[1,2],partenair:0,philosophi:[1,2],preliminari:[1,2],procedur:[1,2],project:0,python:[1,2],rapberri:[1,2],raspberri:[1,2],resist:[1,2],resit:3,sourc:3,startup:[1,2],summari:3,tabl:1,technic:[1,2],thonni:[1,2],titl:1,virtual:[1,2]}}) \ No newline at end of file +Search.setIndex({docnames:["Ohmpi","V1_01","V1_02","V2_00","index"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":1,sphinx:56},filenames:["Ohmpi.rst","V1_01.rst","V1_02.rst","V2_00.rst","index.rst"],objects:{},objnames:{},objtypes:{},terms:{"100nf":[2,3],"10v":[2,3],"12v":[2,3],"1x0":[],"1x1":[],"1x10":[],"24v":[],"50vdc":[2,3],"5vcc":[1,2,3],"5vdc":[1,2,3],"7ah":[],"\u00e9lectrod":4,"ao\u00fbt":0,"case":[1,2,3],"final":[1,2,3],"function":[0,1,2,3],"h\u00e9l\u00e8ne":[0,4],"mm\u00b2":[1,2,3],"new":[1,2,3],"orl\u00e9an":0,"public":[1,2,3],"r\u00e9mi":[0,4],"return":[1,2,3],"switch":[1,2,3],"universit\u00e9":0,"vid\u00e9o":[1,2,3],ADS:[1,2,3],CMS:[],For:[1,2,3],IGE:0,Its:[1,2,3],The:4,These:[1,2,3],With:[1,2,3],abmn:[1,2,3],abov:[1,2,3],acc:[1,2,3],access:[1,2,3],accord:[1,2,3],accur:[1,2,3],accuraci:[1,2,3],acid:[1,2,3],actual:[1,2,3],adafruit:[1,2,3],adapt:[1,2,3],adc:[1,2,3],add:[1,2,3],added:[1,2,3],adding:[1,2,3],addit:[1,2,3],address:[1,2,3],adjust:[1,2,3],ads1115:[1,2,3],ads115:[1,2,3],ads1x15:[1,2,3],after:[1,2,3],all:[1,2,3],allow:[0,1,2,3],alp:0,also:[1,2,3],altern:[1,2,3],amp:[],amplifi:[1,2,3],analog:[1,2,3],ani:[1,2,3],anoth:[1,2,3],appear:[1,2,3],appli:[1,2,3],applic:0,apt:[1,2,3],arduino:[],arm:[],arrai:[1,2,3],articl:[1,2,3],asler:[],assembl:4,assist:[1,2,3],associ:0,attent:[1,2,3],attribut:[1,2,3],author:[0,1,2,3,4],automat:[0,1,2,3],automobil:[1,2,3],avail:[1,2,3],avr:[],bank:[1,2,3],base:[1,2,3],basic:0,batteri:[1,2,3],been:[1,2,3],befor:[1,2,3],behavior:[1,2,3],being:[1,2,3],below:[1,2,3],between:[1,2,3],bin:[1,2,3],bit:[1,2,3],black:[1,2,3],blinka:[1,2,3],block:[1,2,3],blue:[1,2,3],boot:[1,2,3],both:[1,2,3],bottom:[1,2,3],bought:[1,2,3],bridg:[1,2,3],bug:1,build:[1,2,3],button:[1,2,3],c320c104k1:[],cabl:[1,2,3],calcul:[1,2,3],calibr:[1,2,3],call:0,can:[1,2,3],canal:[],cap:[1,2,3],capac:[1,2,3],capacitor:[2,3],car:[],card:4,carri:[1,2,3],caus:[1,2,3],cedex:0,ceram:[2,3],channel:[1,2,3],characterist:[1,2,3],charg:[1,2,3],check:[1,2,3],chosen:[1,2,3],circuit:[1,2,3],circuitpython:[1,2,3],circul:[1,2,3],clean:[1,2,3],clement:[0,4],click:[1,2,3],close:[1,2,3],code:[1,2,3],coef_p0:[1,2,3],coef_p1:[1,2,3],coef_p2:[1,2,3],coef_p3:[1,2,3],coeff:[1,2,3],coeffici:[1,2,3],com:[1,2,3],command:[1,2,3],commerci:[1,2,3],common:[1,2,3],commun:0,complet:4,compon:4,comput:[1,2,3],conduct:[1,2,3],config:[1,2,3],configur:4,congratul:[1,2,3],connect:4,connector:[1,2,3],consequ:[1,2,3],consist:[1,2,3],constitut:[1,2,3],construct:[1,2,3],consumpt:[1,2,3],contact:[1,2,3],contain:[1,2,3],content:4,control:[1,2,3],convers:[1,2,3],convert:[1,2,3],correct:[1,2,3],correspond:1,cost:[0,2,3],could:[1,2,3],cpu:[1,2,3],creat:[1,2,3],creation:0,crimp:[],csv:[1,2,3],ctrl:[1,2,3],current:[0,4],damag:[1,2,3],data:[0,4],date:[0,1,2,3,4],dcconvert:[2,3],deactiv:[1,2,3],dec:[],decid:[1,2,3],decoupl:[2,3],dedic:0,delai:[1,2,3],deliv:[1,2,3],depend:[1,2,3],describ:[1,2,3],design:[1,2,3],desktop:[2,3],despit:[1,2,3],detail:1,dev:[1,2,3],develop:[0,1,2,3,4],diagram:[1,2,3],differ:[1,2,3],digit:[1,2,3],din:[1,2,3],direct:[1,2,3],directli:[1,2,3],directori:[1,2,3],disconnect:[1,2,3],displai:[1,2,3],distanc:[1,2,3],disturb:[1,2,3],divid:[1,2,3],document:[0,1],done:[1,2,3],down:[1,2,3],download:[1,2,3],dsp:[],dual:[1,2,3],duboi:[0,4],durat:[1,2,3],dure:[1,2,3],dzwb4:[1,2,3],e00122ff:0,each:[1,2,3],editor:[1,2,3],eiffel:0,either:[1,2,3],electr:0,electrod:[0,4],electron:[1,2,3],elsevi:0,emil:0,enabl:[1,2,3],end:[1,2,3],energ:[1,2,3],enough:[1,2,3],ensur:[1,2,3],enter:[1,2,3],entir:[1,2,3],environ:[1,2,3],environnementshould:[1,2,3],equal:[1,2,3],equival:[1,2,3],ert:[1,2,3],escap:[1,2,3],estim:[1,2,3],everyon:0,evolv:[1,2,3],exampl:[1,2,3],excess:[1,2,3],execut:[1,2,3],exist:[1,2,3],experi:[0,1,2,3],explain:1,export_path:[2,3],extra:[1,2,3],failur:[1,2,3],fargier:[0,4],fast:[2,3],featur:[1,2,3],femal:[1,2,3],ferrul:[],fewer:[1,2,3],ff10:0,fhac0002zxj:[],field:[1,2,3],fig:[1,2,3],figur:[1,2,3],file:[1,2,3],find:[1,2,3],first:[1,2,3],flexibl:0,florsch:[1,2,3],flow:[1,2,3],folder:[1,2,3],follow:[1,2,3],forquet:[0,4],framework:[1,2,3],franc:0,from:[1,2,3],full:[1,2,3],fulli:0,fuse:[1,2,3],gain:[1,2,3],ganc:[0,4],gather:[1,2,3],gener:[1,2,3,4],ger:0,get:[0,1,2,3],gitlab:[1,2,3],gnd:[1,2,3],gnu:[1,2,3],gpio:[1,2,3],grenobl:0,gro:0,ground:[1,2,3],gui:[1,2,3],guidelin:4,gustav:0,guyard:[0,4],h81k0bya:[],h81k5bya:[],had:[1,2,3],hand:[1,2,3],handl:[1,2,3],hardwar:[0,1,2,3],hardwarex:0,has:[1,2,3],have:[1,2,3],hazard:[1,2,3],header:[1,2,3],hear:[1,2,3],here:[2,3],high:[1,2,3],higher:[2,3],holder:[1,2,3],hole:[1,2,3],home:[1,2,3],horizont:[1,2,3],hous:[1,2,3],how:[1,2,3],howev:[1,2,3],http:[1,2,3],ifsttar:0,illustr:[1,2,3],imag:0,imped:[1,2,3],implent:4,improv:[2,3],in1:[1,2,3],in2:[1,2,3],in3:[1,2,3],in4:[1,2,3],includ:[1,2,3],incom:[1,2,3],increas:[1,2,3],inde:[1,2,3],inject:[0,4],injection_dur:[1,2,3],input:[1,2,3],inra:0,insert:[1,2,3],insid:[1,2,3],instead:[1,2,3],instruct:4,instrument:0,intens:[1,2,3],interfac:[1,2,3],interpret:[1,2,3],introduc:[1,2,3],invit:1,involv:0,ion:[1,2,3],iri:0,irstea:[1,2,3],its:[1,2,3],jason:[2,3],journal:1,json:[2,3],juillet:0,jul:4,juli:4,julien:[0,4],just:[2,3],kemet:[],keyboard:[1,2,3],known:[1,2,3],kohm:[1,2,3],laboratori:[0,1,2,3],last:[2,3],lastli:[1,2,3],latest:[1,2,3],lead:[1,2,3],leav:[1,2,3],length:[1,2,3],less:[1,2,3],let:[1,2,3],libatla:[1,2,3],librari:[1,2,3],lie:[1,2,3],limit:[3,4],line:[1,2,3],list:4,lithium:[1,2,3],littelfus:[],littl:[1,2,3],lm358an:[],lm358n:[1,2,3],locat:[1,2,3],logger:[0,1,2,3],low:[0,1,2,3],lr20:[],lying:[1,2,3],lyon:0,made:[1,2,3],mai:[1,2,3],main:[1,2,3],make:[1,2,3],manag:[1,2,3],manual:[1,2,3],manufactur:[],manuscript:[1,2,3],master:[1,2,3],matur:4,maximum:[1,2,3],measur:[0,4],mechan:[1,2,3],meet:[1,2,3],mega:[1,2,3],menu:[1,2,3],met:[1,2,3],meter:[0,1,2,3],meterfeatur:0,micro:[1,2,3],mimic:[1,2,3],min:[1,2,3],miss:1,mm2:[1,2,3],model:[1,2,3],modif:[1,2,3],modifi:[1,2,3],modul:[1,2,3],mohm:[1,2,3],monitor:[1,2,3],moreov:[1,2,3],mount:[1,2,3],mous:[1,2,3],multi:[1,2,3],multiplex:[0,4],multipli:[1,2,3],must:[1,2,3],mux:[1,2,3],name:[1,2,3],nano:[1,2,3],nb_electrod:[1,2,3],nbr_mea:[1,2,3],necessari:[1,2,3],need:[1,2,3],neg:[1,2,3],next:[1,2,3],nicola:[0,4],noob:[1,2,3],nopb:[],normal:[1,2,3],note:[1,2,3],now:[1,2,3],number:[1,2,3],numer:[1,2,3],numpi:[1,2,3],obtain:[1,2,3],offcial:4,offer:[1,2,3],ohm:[1,2,3],ohmmet:[1,2,3],ohmpi_param:[2,3],ohx:0,onc:[1,2,3],one:[1,2,3],onto:[1,2,3],open:[0,1,2,3],oper:4,optim:[1,2,3],option:[1,2,3],order:[1,2,3],orient:[2,3],osf:[1,2,3],other:[1,2,3],our:[1,2,3],out:[1,2,3],output:[1,2,3],overh:[2,3],pai:[1,2,3],panda:[1,2,3],part:[1,2,3],parten:0,partenair:4,pat1l:[],path:[1,2,3],pcb:[1,2,3],per:[1,2,3],perform:[0,1,2,3],permut:[1,2,3],philosophi:[0,4],pic:[],piec:[],pin:[1,2,3],pip:[1,2,3],pitch:[1,2,3],place:[1,2,3],pleas:[1,2,3],plug:[1,2,3],point:[1,2,3],polar:[1,2,3],pole:[1,2,3],posit:[1,2,3],possibl:[1,2,3],potenti:[1,2,3],potentiomet:[1,2,3],pour:[],power:[1,2,3],practic:[1,2,3],precis:[1,2,3],prefer:[1,2,3],prepar:[1,2,3],present:[0,1,2,3],press:[1,2,3],prevent:[2,3],previous:[1,2,3],print:[1,2,3],pro:[],produc:[1,2,3],program:[1,2,3],progress:[0,4],project:4,propos:[1,2,3],protocol:[1,2,3],provid:[0,1,2,3],publish:1,puls:[1,2,3],purpos:[1,2,3],pyhton3:[1,2,3],python3:[1,2,3],pythonid:[1,2,3],quadripol:[1,2,3],quadrupol:[1,2,3],quantiti:[],r10:[1,2,3],r11:[1,2,3],r12:[1,2,3],r_ref:[1,2,3],rail:[1,2,3],rang:[1,2,3],raspberri:4,raspbian:[1,2,3],raspebrri:[1,2,3],readm:[1,2,3],recommend:[1,2,3],red:[1,2,3],reduct:[1,2,3],refer:[1,2,3],relai:[1,2,3],releas:4,remain:[1,2,3],rememb:[1,2,3],remot:[1,2,3],repeat:[1,2,3],repetit:[1,2,3],replac:[2,3],repositori:[1,2,3],repres:[1,2,3],requir:[1,2,3],research:4,resist:[0,4],resistor:[1,2,3],resolut:[1,2,3],respect:[1,2,3],result:[1,2,3],revers:[1,2,3],reversa:[0,1,2,3],robust:[0,1,2,3],role:[1,2,3],root:[1,2,3],rpi:[1,2,3],rro:0,run:[1,2,3],safeti:[1,2,3],sain:[],sainsmart:[],same:[1,2,3],samtec:[],save:[1,2,3],scale:0,schemat:[1,2,3],scienc:[1,2,3],scientif:0,screen:[1,2,3],screw:[1,2,3],second:[1,2,3],section:[1,2,3],see:[1,2,3],select:[1,2,3],sequenc:[1,2,3],sequence_delai:[1,2,3],seri:[1,2,3],serv:[1,2,3],set:[1,2,3],setp:[2,3],setup:[1,2,3],sever:[1,2,3],shield:[1,2,3],shortcut:[1,2,3],should:[1,2,3],show:[1,2,3],shown:[1,2,3],signal:[1,2,3],simpl:[1,2,3],simpli:[1,2,3],simultan:[1,2,3],singl:[1,2,3],slope:[1,2,3],small:[0,1,2,3],smaller:[1,2,3],smart:[],softwar:[1,2,3],soil:[1,2,3],solder:[1,2,3],solut:[1,2,3],some:[1,2,3,4],sound:[1,2,3],sourc:[0,1,2,3],specif:[1,2,3],specifi:[1,2,3],spi:[1,2,3],ssw:[],stabl:[1,2,3],stack:[1,2,3],stainless:[1,2,3],start:[1,2,3,4],statu:[0,4],steel:[1,2,3],step:[1,2,3],still:[1,2,3],storag:[1,2,3],strict:[1,2,3],strip:[1,2,3],strong:[1,2,3],stronger:[1,2,3],strongli:[1,2,3],stuck:[1,2,3],studi:[1,2,3],subject:[1,2,3],sudo:[1,2,3],suffici:[1,2,3],suggest:[1,2,3],suitabl:[1,2,3],sum:[1,2,3],suppli:[1,2,3],suppress:[2,3],sure:[1,2,3],surfac:0,system:[1,2,3],tab:[1,2,3],tabl:[1,2,3],target:4,task:[1,2,3],technic:4,temperatur:[1,2,3],ten:[1,2,3],termin:[1,2,3],test:[1,2,3],texa:[],than:[1,2,3],the9:[1,2,3],thei:[1,2,3],them:[1,2,3],therefor:[1,2,3],thi:[0,1,2,3],thousand:[1,2,3],three:[1,2,3],through:[1,2,3],thu:[1,2,3],time:[1,2,3],togeth:[1,2,3],toler:[2,3],tool:0,total:[1,2,3],track:[1,2,3],traco:[2,3],tracopow:[],trn3:[2,3],trn:[],tru:[],turn:[1,2,3],tutori:4,two:[1,2,3],txt:[1,2,3],type:[1,2,3],typic:[1,2,3],under:[1,2,3],unexpectedli:[1,2,3],unit:[1,2,3],univ:0,unzip:[1,2,3],updat:0,upgrad:[2,3],upping:[1,2,3],upw50b50rv:[],use:[1,2,3],used:[1,2,3],user:[1,2,3,4],using:[1,2,3],usr:[1,2,3],valid:[1,2,3],valu:[1,2,3],variou:[1,2,3],velleman:[1,2,3],venv:[1,2,3],veri:[2,3],version:[1,2,3],vertic:[1,2,3],via:[1,2,3],villeurbann:0,vivien:[0,4],voltag:[1,2,3],voltmet:[1,2,3],wai:[1,2,3],want:[2,3],watch:[1,2,3],weaker:1,websit:[1,2,3],weidmul:[],welcom:0,well:[1,2,3],were:[1,2,3],when:[1,2,3],where:[1,2,3],which:[1,2,3],whose:[1,2,3],willing:0,window:[1,2,3],wire:[1,2,3],within:[1,2,3],without:[1,2,3],wjwzhv1v3pk:[1,2,3],would:[1,2,3],wpm404:[1,2,3],write:[1,2,3],www:[1,2,3],yannick:[0,4],you:[1,2,3],your:[1,2,3],youtub:[1,2,3]},titles:["OhmPi project","OhmPi V 1.01 (limited to 32 electrodes)","OhmPi V 1.02 (limited to 32 electrodes)","OhmPi V 2.00 (64 or 128 \u00e9lectrodes)","OHMPI: Open source and open hardware resitivity-meter"],titleterms:{"\u00e9lectrod":3,IDE:[1,2,3],The:[1,2,3],activ:[1,2,3],assembl:[1,2,3],board:[1,2,3],card:[1,2,3],center:4,cite:0,complet:[1,2,3],compon:[1,2,3],configur:[1,2,3],connect:[1,2,3],current:[1,2,3],data:[1,2,3],descript:[1,2,3],document:4,electr:[1,2,3],electrod:[1,2,3],environn:[1,2,3],four:[1,2,3],frist:[1,2,3],hardwar:4,implement:[1,2,3],implent:[1,2,3],initi:[1,2,3],inject:[1,2,3],instal:[1,2,3],instruct:[1,2,3],introduct:0,limit:[1,2],list:[1,2,3],measur:[1,2,3],mesur:[1,2,3],meter:4,multiplex:[1,2,3],ohmpi:[0,1,2,3,4],onli:[1,2,3],open:4,oper:[1,2,3],packag:[1,2,3],paramet:[1,2,3],partenair:0,philosophi:[1,2,3],preliminari:[1,2,3],procedur:[1,2,3],project:0,python:[1,2,3],rapberri:[1,2,3],raspberri:[1,2,3],resist:[1,2,3],resit:4,sourc:4,startup:[1,2,3],summari:4,tabl:[],technic:[1,2,3],thonni:[1,2,3],titl:[],virtual:[1,2,3]}}) \ No newline at end of file diff --git a/sphinx/source/V2_00.rst b/sphinx/source/V2_00.rst new file mode 100644 index 0000000000000000000000000000000000000000..504003422002a50608a2a0e67b81a7c3497b2db9 --- /dev/null +++ b/sphinx/source/V2_00.rst @@ -0,0 +1,542 @@ +***************************************** +OhmPi V 2.00 (64 or 128 électrodes) +***************************************** + + + + + +.. note:: + + In this version, we have improved the electronic measurement board. To upgrade from version 1.01 to 1.02, + you just have to replace the measurement board by the new one proposed here. + +The philosophy of Ohmpi +************************** +The philosophy of Ohmpi V1.01 is to offer a multi electrode resistivity meter, from a set of commercially available +electronic cards it is a resistivity meter limited to 32 electrodes only. It is limited to low-current injection, +but suitable for small laboratory experiments and small field time monitoring + + +Technical data +*************** ++-------------------------------+--------------------+-----------+ +| **Parameter** | **Specifications** | Units | ++-------------------------------+--------------------+-----------+ +|Electrodes |32 | | ++-------------------------------+--------------------+-----------+ +|Operating temperature |0 to 50 |°c | ++-------------------------------+--------------------+-----------+ +|Power consumption of CPU and |18.5 |W | +|control system | | | ++-------------------------------+--------------------+-----------+ +|Voltage injection |9 |V | ++-------------------------------+--------------------+-----------+ +|Battery |12 |V | ++-------------------------------+--------------------+-----------+ +|Current |0 to 50 |mA | ++-------------------------------+--------------------+-----------+ +|Min pulse duration |150 |mS | ++-------------------------------+--------------------+-----------+ +|Input impedance |36 |Mohm | ++-------------------------------+--------------------+-----------+ +|Data storage |micro SD card | | ++-------------------------------+--------------------+-----------+ +|Resolution |O.O1 |ohm | ++-------------------------------+--------------------+-----------+ + +Raspberry Pi configuration +****************************************** +OS installation +================ + +The first step is to start up the Raspberry Pi board, including installation of an OS (operating system). +For this step, the installation instructions are well described on the Raspberry website + +1. Watch the vidéo "how to set up your raspberry Pi" (https://www.youtube.com/watch?v=wjWZhV1v3Pk) + +2. The authors recommend installing the latest stable and complete version of Raspbian by using NOOBS (a simple-to-use operating system installer). + +.. note:: + All the development tests were performed on Raspberry Pi 3 Model B, we used the following version of Raspbian: + + .. figure:: raspbian_version.jpg + :width: 800px + :align: center + :height: 400px + :alt: alternate text + :figclass: align-center + + + +.. warning:: + Once the OS has been installed, **1-wire, spi and GPIO remote option** must be deactivated via the Raspbian GUI settings menu. Failure to carry out this task may cause damage to the relay shield cards during measurements. + + + + +3. When the relays are connected to the GPIO, make sure that all the GPIOs are in the low position when the raspberry starts up. If not, the relays will activate unexpectedly. +To ensure that the GPIOs are in Low position, you will need to modify the /boot/config.txt file. + + Run the terminal, and write + + .. code-block:: python + + cd /boot/ + +4. Open config.txt with GNU nano editor + + .. code-block:: python + + sudo nano config.txt + +5. At the end of the file write : + + .. code-block:: python + + gpio=8=op,dl + gpio=7=op,dl + +6. Press Ctrl +O to save the modifications and press enter +7. Press Ctrl +x to escap and return to the terminal +8. Close the terminal + + + +Virtual Environnement and packages +================================== + +All dependencies are specified in requirements.txt + +.. note:: + All instructions below should be typed in the terminal + +It is first necessary to ensure that the libatlas-base-dev library is installed: + +.. code-block:: python + + sudo apt-get install libatlas-base-dev + +We strongly recommend users to create a virtual environment to run the code and installed all required dependencies. It can be done either in a directory gathering all virtual environments used on the computer or within the ohmpy directory. + +Create the virtual environment: + +.. code-block:: python + + python3 -m venv ohmpy + +Activate it using the following command: + +.. code-block:: python + + source ohmpy/bin/activate + +Install packages within the virtual environment. Installing the following package should be sufficient to meet dependencies: + +.. code-block:: python + + pip install RPi.GPIO adafruit-blinka numpy adafruit-circuitpython-ads1x15 pandas + +Check that requirements are met using + +.. code-block:: python + + pip list + +You should run you code within the virtual environment +to leave the virtual environment simply type: + +.. code-block:: python + + deactivate + + +Activate virtual environnement on Thonny (Python IDE) (on Rapberry Pi) +======================================================================== + +If you decided to use a virtual environment, it is necessary to setup Thonny Python IDE the first time you use it. + +1- Run the Thonny Python IDE software, Click on raspebrry acces **menu > programming> Thonny pythonIDE** + +2- Thonny's interface opens, Python runs on the Root (Python 3.7.3 (/usr/bin/python3)) + +.. figure:: thonny_first_interface.jpg + :width: 600px + :align: center + :height: 450px + :alt: alternate text + :figclass: align-center + +3-Click on **Run>select interpreter**, a new window opens click on interpret + +.. figure:: thonny_option.jpg + :width: 600px + :align: center + :height: 450px + :alt: alternate text + :figclass: align-center + +4-On the new open windows select **alternative Pyhton3 or virtual environnement** + +.. figure:: thonny_interpreter.jpg + :width: 600px + :align: center + :height: 450px + :alt: alternate text + :figclass: align-center + +5- New buttons appeared, selected **"locate another python executable "** + +6- A new window opens, find the folder where there is the python 3 file in the virtual environment folder previously created **/home/pi/ohmpi/bin/python3**. + +7- In the **known interpreter** tab the path of the virtual environnementshould appear + +.. figure:: thonny_interpreter_folder.jpg + :width: 600px + :align: center + :height: 450px + :alt: alternate text + :figclass: align-center + +8- Close the window by clicking on **ok**. + +9- Close thonny to save modifications + + +Assembly of the measuring/current injection cards, and connection with the Raspberry Pi +***************************************************************************************** + +Electrical resistivity measurements board +========================================== + +a) Description +----------------------------- + +To measure electrical resistivity with Raspberry Pi, an ADS1115 was introduced, as proposed by Florsch [7]. The ADS1115 +is a 16-bit ADC (Analog-to-Digital Converter), with an adaptable gain. Its value has been set at 2/3 in this study. The +input signal value could lie between - to + 6.114 V. The ADS1115 is mounted on a board adapted from an in-house design. +Figure 5 shows the general diagram for the electronic measurement board developed. This figure also displays the test +circuit used to test the board in the laboratory, which mimics the behavior of a soil subjected to current injection. +In this test circuit, resistance R11 represents the soil resistance. +Soil resistance R11 is connected to electrodes A and B for the current injection. Resistors R10 and R12 constitute +the contact resistances between soil and electrodes; they are typically made of stainless steel. The battery, which +allows for direct current injection, is connected in series with resistors R10, R11 and R12. In this part of the board, +resistance R9 has been added to measure the current flowing between electrodes A and B. This resistance value has been +set at 50 ohms in order to ensure: +• a precise resistance, +• a resistance less than the sum of resistors R10, R11 and R12; indeed, R10 and R12 generally lie between 100 and 5,000 ohms. +To measure the current intensity between A and B, the electrical potential difference at the pole of the reference resistor (R9) +is measured. The intensity (in mA) is calculated by inserting the resulting value into the following: ? +To measure the potential difference needed to measure current intensity, the ADS 1115 is connected to the ground of the circuit. +In our case, the ground reference is electrode B. The analog inputs A1 and A0 of the ADS1115 are connected to each pole of the +reference resistor (R9). In order to increase input impedance and adapt the signal gain, tracking amplifiers have been included +and completed by a divider bridge (R5, R8, R6 and R7) located between the two amplifiers. The resistance of the divider bridge +ensures that the signal remains between 0 and 5 V, in accordance with the ADS1115 signal gain. To measure the potential difference, +the M and N electrodes are connected to analog inputs A2 and A3 of the ADS 1115. Between the ADC and the electrodes, two tracking +amplifiers and a divider bridge have been positioned so as to obtain a potential lying within the 0-5 V range at the analog input of the ADS 1115. +Let's note that the potential difference value would equal the potential measured with ADS1115 multiplied by the voltage reduction +value of the divider bridge (see Section 5.2). Despite the use of high-resolution resistance (i.e. accurate to within 1%), it is +still necessary to calibrate the divider bridge using a precision voltmeter. For this purpose, the input and output potentials +of the divider bridge must be measured using an equivalent circuit for various electrical potential values. These values serve +to calculate the gain. With this electronic board, it is possible to measure the potential and intensity without disturbing the +electric field in the ground, with the total input impedance value being estimated at 36 mega-ohms. +A shortcut between Electrodes A and B will generate excessive currents, whose intensities depend on the type of battery used. +A lithium ion battery or automobile-type lead-acid battery can deliver a strong enough current to damage the board and, as such, +constitutes a potential hazard. We therefore recommend adding a 1.5-A fuse between the battery and resistor R9. +In version 1.02, we have improved the electronic board of measurement. we have added a DC/DC converter to supply the operational amplifiers +(2 Traco power DC/DCconverter TRN3-1215). These converters allow to limit the suppression of the signal when the injected voltage is higher than 10V. +We also added 4 capacitors on the +12v inputs of the fast operational amplifiers. These are decoupling capacitors (typically 100nF ceramic) +between each power supply terminal and ground. The last point, we have added a four very high resistances of 10 MOhm, between the ground and +the signal input on the operational amplifiers. This prevents the operational amplifiers from overheating. + +.. figure:: schema_measurement_board1_02.png + :width: 800px + :align: center + :height: 400px + :alt: alternate text + :figclass: align-center + + Measurement board (Ohmpi version 1.02) + +.. note:: + If you want to have very accurate measurements you can replace the resistors with a tolerance of 1% by resistors with a tolerance of 0.01% which will improve the measurement, but the cost will be higher. + + + +b) Implementation +-------------------------------- +The measurement board must be printed using the PCB file (Source file repository), with components soldered onto +it by following the steps described below and illustrated in the following figure : + +* Step no. 1: test divider bridge + For each measurement channel, we have installed a bridge divider, it is necessary to test with ohmmeter the value of the resistances, to adjust each coefficients (coef_p0, coef_p1, coef_p2, coef_p3) in the Ohmpi.py code.. + + .. math:: + coeff po = (R1 + R2) / R1 + + .. math:: + coeff p1 = (R3 + R4) / R3 + + .. math:: + coeff p2 = (R7 + R6) / R7 + + .. math:: + coeff p3 = (R9 + R8) / R9 + + .. code-block:: python + :linenos: + :lineno-start: 36 + + """ + hardware parameters + """ + R_ref = 50 # reference resistance value in ohm + coef_p0 = 2.5 # slope for current conversion for ADS.P0, measurement in V/V + coef_p1 = 2.5 # slope for current conversion for ADS.P1, measurement in V/V + coef_p2 = 2.5 # slope for current conversion for ADS.P2, measurement in V/V + coef_p3 = 2.5 # slope for current conversion for ADS.P3, measurement in V/V + + The coefficient parameters can be adjusted in lines 40 to 43 of the ohmpi.py code. + + +* Step no. 2: installation of the 1-Kohm resistors with an accuracy of ± 1% (b-in the figure). +* Step no. 3: installation of the 1.5-Kohm resistors with an accuracy of ± 1%(C-in the figure). +* Step no. 4: installation of both the black female 1 x 10 header and the 7-blue screw terminal blocks (c-in the figure) +* Step no. 5: installation of the 50-Ohm reference resistor ± 0.1%, please check the value and correct the line 39 in ohmpi.py code (d-in the figure) +* Step no. 6: addition of both the ADS115 directly onto the header (pins must be plugged according to the figure) and the LM358N operational amplifiers (pay attention to the orientation) (e-in the figure). +* Step no. 7: installation of the 10-Mohm resistors with an accuracy of ± 5% (f-in the figure). +* Step no. 8: installation of the two DC/DC converter TRN3-1215 (h-in the figure). +* Setp no. 9: installation of the four capacitor on 100-nF/50vDC and the fuse of 10-A (h-in the figure). + +1-Kohm and 1.5-Kohm resistors apply to the divider bridge. If, for example, you prefer using a stronger power supply, it would be possible to adjust the divider bridge value by simply modifying these resistors. +Once all the components have been soldered together, the measurement board can be connected to the Raspberry Pi and the +battery terminal, according to Figure 9. Between the battery and the TX+ terminal of the measurement board, remember to +place a fuse holder with a 1.5-A fuse for safety purposes. + +.. figure:: measurement_board1-02.jpg + :width: 800px + :align: center + :height: 700px + :alt: alternate text + :figclass: align-center + + Measurement circuit board assembly: a) printed circuit board, b) adding the 1-Kohm resistors ± 1%, c)adding the 1.5-Kohm resistors ± 1%, d) adding the black female 1 x 10 header and the 7-blue screw terminal block(2 pin, 3.5-mm pitch), e) adding the 50-ohm reference resistor ± 0.1%, and f) adding the ADS1115 and the LM358N low-power dual operational amplifiers + +.. figure:: measurement_board-2-V1-02.jpg + :width: 800px + :align: center + :height: 700px + :alt: alternate text + :figclass: align-center + + Measurement board installation with Raspberry Pi + +Current injection board +======================= + +To carry out the electrical resistivity measurement, the first step consists of injecting current into the ground. +In our case, a simple 9-V lead-acid battery is used to create an electrical potential difference that results +in current circulating into the ground. The current is injected through electrodes A and B (see Fig. 2). This +injection is controlled via a 4-channel relay module board connected to the Raspberry Pi. The mechanical relay +module board is shown in Figure 4. Relays 1 and 2 serve to switch on the current source. The common contacts +of relays 1 and 2 are connected to the positive and negative battery poles, respectively. The normally open +contacts of both relays are connected to the common contacts of relays 3 and 4. Relays 1 and 2 are connected +to the GPIO 7 on the Raspberry Pi and therefore activate simultaneously. The role of relays 3 and 4 is to reverse +the polarity at electrodes A and B. Thus, when relays 3 and 4 are energized by the GPIO 8 in the open position, +the positive battery pole is connected to electrode A and the negative pole to electrode B. When not energized, +they remain in the normally closed position. This set-up offers a simple and robust solution to inject current. + +.. figure:: current_board.jpg + :width: 800px + :align: center + :height: 400px + :alt: alternate text + :figclass: align-center + + Wiring of the 4-channel relay module board for current injection management + +The next step consists of featuring the 4-channel relay module used for current injection and its assembly. The wiring +between the relays must be carried out in strict accordance with Fig. 10. This card must then be connected to the Raspberry +Pi and the measurement card. On the Raspberry Pi, it is necessary to connect inputs In1 and In2 to the same GPIO. For this +purpose, it is necessary to solder together the two pins on the 4-channel relay shield module and connect them to the Raspberry Pi GPIO-7 (Fig. 10). The same must be performed for inputs In3 and In4 with GPIO-8. Connect the GND and 5Vdc pins of +the relay card’s 4 channels respectively to the GND pin and 5Vcc of the Raspberry Pi. Now connect relays 1, 2, 3 and 4, as +shown in the diagram, using 1-mm2 cables (red and black in Fig. 10). Lastly, connect the inputs of relay 1 and 2 respectively +to terminals B and A of the measurement board. + +.. figure:: installation_current_board_1_02.jpg + :width: 800px + :align: center + :height: 700px + :alt: alternate text + :figclass: align-center + + Current injection board installation with Raspberry Pi + + +Congratulations, you have build a 4 electrodes resistivity-meter. + + +Frist four electrodes resistivity mesurement +============================================ + + +Under construction ! + +Describe the way to valide the first part of the instruction. +Electrical resistivity measurement on test circuit + + +Multiplexer implentation +************************* +The resistivity measurement is conducted on four terminals (A, B, M and N). The user could perform each measurement +by manually plugging four electrodes into the four channel terminals. In practice, ERT requires several tens or thousands +of measurements conducted on different electrode arrays. A multiplexer is therefore used to connect each channel to one of +the 32 electrodes stuck into the ground, all of which are connected to the data logger. + + +We will describe below how to assemble the four multiplexers (MUX), one per terminal. A multiplexer consists of 2 relay +modules with 16 channels each. On the first board, on each MUX, 15 relays out of the 16 available will be used. Please note that the suggested +configuration enables making smaller multiplexers (8 or 16 electrodes only). On the other hand, if you prefer upping to 64 electrodes, +which is entirely possible, a GPIO channel multiplier will have to be used. +To prepare the multiplexer, the channels of the two relay boards must be connected according to the wiring diagram shown below. + +.. figure:: multiplexer_implementation.jpg + :width: 800px + :align: center + :height: 500px + :alt: alternate text + :figclass: align-center + + Schematic diagram of the wiring of two 16-channel relay shields + + +For this purpose, 0.5-mm² cables with end caps are used and their length adjusted for each connection in order to produce a clean assembly. +The length was adjusted so that the distance between the two points to be connected could be directly measured on the board once they had +been assembled one above the other, in adding an extra 3 cm. The wires at the ends need to be stripped and the end caps added. +As a final step, connect the cables to the correct connectors. This operation must be repeated in order to carry out all the wiring shown in Figure below. + +Once the operation has been completed, the 16 control pins of each 16-channel relay shield card must be prepared. Each card actually contains 16 input channels +for activating each relay (Fig. 12). However, we will be activating several relays with a single GPIO (to limit the number of GPIOs used on Raspberry Pi, +see Section 2.4). To execute this step, it will be necessary to follow the protocol presented in Figure. + + .. figure:: connection.jpg + :width: 800px + :align: center + :height: 400px + :alt: alternate text + :figclass: align-center + + Connection to the 16-channel relay shield + +For the 16-channel relay shield no. 1, these steps must be followed: +* Position a test circuit with 10 horizontal and 10 vertical holes on the pins of the 16-channel relay shield board. +* Follow the diagram and solder the pins as shown in Fig. +* Lastly, solder 0.5-mm² wires 1 m in length to the test circuit. + +For relay shield no. 2, follow the same procedure, but solder all the pins together (d-e-f). +This same operation must be repeated for the other three multiplexers as well. +The next step consists of connecting the relay card inputs to the Raspberry Pi according to Table 5 for all four multiplexers. + + ++-------------------------------+-------------------------------------------+---------------------+ +| |Relay shield n°1 |Relay Shield n°2 | +| +----------+----------+----------+----------+---------------------+ +| |Pin 1 |Pin 2-3 |Pin 4-7 |Pin 8-16 |Pin 1- 16 | ++-------------------------------+----------+----------+----------+----------+---------------------+ +| Multiplexer A |12 |16 |20 |21 |26 | ++-------------------------------+----------+----------+----------+----------+---------------------+ +| Multiplexer B |18 |23 |24 |25 |19 | ++-------------------------------+----------+----------+----------+----------+---------------------+ +| Multiplexer M |06 |13 |04 |17 |27 | ++-------------------------------+----------+----------+----------+----------+---------------------+ +| Multiplexer N |22 |10 |09 |11 |05 | ++-------------------------------+----------+----------+----------+----------+---------------------+ + + Connection of the GPIOs to each multiplexer + + +Electrode connection +************************* +At this point, all that remains is to connect the electrodes of each multiplexer to a terminal block (Fig. 13). In our set-up, screw terminals assembled on a din rail were used. +According to the chosen multiplexer configuration, all the relays of each multiplexer will be connected to an electrode and, consequently, each electrode will have four incoming +connections. Instead of having four cables connecting an electrode terminal to each multiplexer, we recommend using the cable assembly shown in the following Figure. + +.. figure:: cable.jpg + :width: 800px + :align: center + :height: 300px + :alt: alternate text + :figclass: align-center + + Wire cabling for multiplexer and terminal screw connection + +the next figure provides an example of multiplexer relay connections for electrode no. 1: this electrode of multiplexer MUX A must be connected to electrode no. 1 of MUX B. Moreover, electrode no. 1 of MUX B +must be connected to electrode no. 1 of MUX N, which in turn must be connected to electrode no. 1 of MUX M. Lastly, electrode no. 1 of MUX M is connected to the terminal block. +This operation must be repeated for all 32 electrodes. + +.. figure:: electrode_cable.jpg + :width: 800px + :align: center + :height: 800px + :alt: alternate text + :figclass: align-center + + Example of a multiplexer connection to the screw terminal for electrode no. 1. + +.. warning:: + The 16 channel relay cards exist in 5-V and 12-V , in the bottom figure we have 12-V cards that we will directly connect to the battery. + In case you bought 16 channel relay 5-V cards, you will need to add a DC/DC 12-V/5-V converter. You can use a STEP DOWN MODULE DC-DC (Velleman WPM404) and set the voltage to 5V with the potentiometer. + +Operating instruction +************************* + +Preliminary procedure (Only for the initial operation) +====================================================== +The open source code must be downloaded at the Open Science Framework source file repository for this manuscript (https://osf.io/dzwb4/) +or at the following Gitlab repository address: https://gitlab.irstea.fr/reversaal/OhmPi. The code must be then unzipped into a selected folder (e.g. OhmPi-master). A “readme†file +is proposed in the directory to assist with installation of the software and required python packages. It is strongly recommended to create a python virtual environment for installing +the required packages and running the code. + + +Startup procedure +================== +As an initial operating instruction, all batteries must be disconnected before any hardware handling. Ensure that the battery is charged at full capacity. Plug all the electrodes (32 or fewer) +into the screw terminals. The Raspberry Pi must be plugged into a computer screen, with a mouse and keyboard accessed remotely. The Raspberry Pi must then be plugged into the power supply +(for laboratory measurements) or a power bank (5V - 2A for field measurements). At this point, you'll need to access the Raspbian operating system. Inside the previously created folder “ohmPiâ€, +the protocol file “ABMN.txt†must be created or modified; this file contains all quadrupole ABMN numeration (an example is proposed with the source code). Some input parameters of the main “ohmpi.py†+function may be adjusted/optimized depending on the measurement attributes. For example, both the current injection duration and number of stacks can be adjusted. At this point, the9 V and 12-V battery can be +plugged into the hardware; the "ohmpi.py" source code must be run within a python3 environment (or a virtual environment if one has been created) either in the terminal or using Thonny. You should now +hear the characteristic sound of a relay switching as a result of electrode permutation. After each quadrupole measurement, the potential difference as well as the current intensity and resistance +are displayed on the screen. A measurement file is automatically created and named "measure.csv"; it will be placed in the same folder. + +Electrical resistivity measurement parameters description +========================================================== + +In the version 1.02, the measurement parameters are in the Jason file (ohmpi_param.json). + +.. code-block:: python + :linenos: + :lineno-start: 1 + + + nb_electrodes = 32 # maximum number of electrodes on the resistivity meter + injection_duration = 0.5 # Current injection duration in second + nbr_meas= 1 # Number of times the quadripole sequence is repeated + sequence_delay= 30 # Delay in seconds between 2 sequences + stack= 1 # repetition of the current injection for each quadripole + export_path= "home/pi/Desktop/measurement.csv" + + + +Complete list of components +******************************* +.. warning:: + The list evolve a little bit after the publication of the article, it is necessary to refer to this list, the article is out of date + + +.. csv-table:: List of components + :file: C:\Users\remi.clement\Documents\28_ohmpi_all_git\sphinx\source\list - 1_02.csv + :widths: 30, 70, 70, 70, 70,70 + :header-rows: 1 + + diff --git a/sphinx/source/index.rst b/sphinx/source/index.rst index d2aaf8480ab6fda2b9f2e7a78f644653b80ef947..eb2e4bcc3e69d04a849671c7f30b586ca5bc25e5 100644 --- a/sphinx/source/index.rst +++ b/sphinx/source/index.rst @@ -34,6 +34,7 @@ Contents: Ohmpi V1_01 V1_02 + V2_00