From d0fde750c84bfb7ccfbf9b714e60b28fb281ea62 Mon Sep 17 00:00:00 2001 From: Guillaume <sagitta1618@gmail.com> Date: Tue, 1 Nov 2022 16:49:09 +0000 Subject: [PATCH] Updates for working webinterface with new process_commands() - fix passing sequence with new process_commands - update process_commands as json.loads() parse recursively - update index.html pseudo-section (+ hover info) - comment double info log in run_sequence_async - fix update_settings by adding '_settings' to common cmd_id with set_sequence (from http_interface) --- http_interface.py | 31 +++-- index.html | 346 ++++++++++++++++++++++++++++++++-------------- ohmpi.py | 38 ++--- 3 files changed, 284 insertions(+), 131 deletions(-) diff --git a/http_interface.py b/http_interface.py index 9c43bae7..af67a422 100644 --- a/http_interface.py +++ b/http_interface.py @@ -7,6 +7,8 @@ from termcolor import colored import pandas as pd import shutil import time +import numpy as np +from io import StringIO import threading import paho.mqtt.client as mqtt_client import paho.mqtt.publish as publish @@ -121,12 +123,10 @@ class MyServer(SimpleHTTPRequestHandler): received = False cmd_id = uuid.uuid4().hex dic = json.loads(self.rfile.read(int(self.headers['Content-Length']))) - #print('++', dic, cmd_id) rdic = {} # response dictionary if dic['cmd'] == 'run_multiple_sequences': payload = json.dumps({'cmd_id': cmd_id, 'cmd': 'run_multiple_sequences'}) publish.single(payload=payload, **publisher_config) - elif dic['cmd'] == 'interrupt': payload = json.dumps({'cmd_id': cmd_id, 'cmd': 'interrupt'}) publish.single(payload=payload, **publisher_config) @@ -151,13 +151,14 @@ class MyServer(SimpleHTTPRequestHandler): shutil.rmtree('data') os.mkdir('data') elif dic['cmd'] == 'update_settings': - # ohmpi.stop() if 'sequence' in dic['config'].keys() and dic['config']['sequence'] is not None: - sequence = dic['config']['sequence'] - dic['config'].pop('sequence', None) - payload = json.dumps({'cmd_id': cmd_id, 'cmd': 'set_sequence', 'args': sequence}) + sequence = dic['config'].pop('sequence', None) + sequence = np.loadtxt(StringIO(sequence)).astype(int).tolist() # list of list + # we pass the sequence as a list of list as this object is easier to parse for the json.loads() + # of ohmpi._process_commands() + payload = json.dumps({'cmd_id': cmd_id, 'cmd': 'set_sequence', 'kwargs': {'sequence': sequence}}) publish.single(payload=payload, **publisher_config) - payload = json.dumps({'cmd_id': cmd_id, 'cmd': 'update_settings', 'args': dic['config']}) + payload = json.dumps({'cmd_id': cmd_id + '_settings', 'cmd': 'update_settings', 'kwargs': {'config': dic['config']}}) cdic = dic['config'] publish.single(payload=payload, **publisher_config) elif dic['cmd'] == 'invert': @@ -165,15 +166,19 @@ class MyServer(SimpleHTTPRequestHandler): elif dic['cmd'] == 'getResults': pass elif dic['cmd'] == 'rsCheck': - # ohmpi.rs_check() payload = json.dumps({'cmd_id': cmd_id, 'cmd': 'rs_check'}) publish.single(payload=payload, **publisher_config) + + elif dic['cmd'] == 'getRsCheck': fnames = sorted([fname for fname in os.listdir('data/') if fname[-7:] == '_rs.csv']) - df = pd.read_csv('data/' + fnames[-1]) - ddic = { - 'AB': (df['A'].astype('str') + '-' + df['B'].astype(str)).tolist(), - 'res': df['RS [kOhm]'].tolist() - } + if len(fnames) > 0: + df = pd.read_csv('data/' + fnames[-1]) + ddic = { + 'AB': (df['A'].astype('str') + '-' + df['B'].astype(str)).tolist(), + 'res': df['RS [kOhm]'].tolist() + } + else: + ddic = {} rdic['data'] = ddic elif dic['cmd'] == 'download': shutil.make_archive('data', 'zip', 'data') diff --git a/index.html b/index.html index 70a2a2da..b334d18b 100644 --- a/index.html +++ b/index.html @@ -38,6 +38,7 @@ <input id="cmax" type="number" value=""/> <button id="capplyBtn" type="button" class="btn btn-info">Apply</button> <div id="gd"></div> + <div id="hoverinfo" style="margin-left:80px;"></div> <div class="mb3 row"> <label for="quadSelect">Quadrupole:</label> <div class="col-sm-10"> @@ -52,6 +53,7 @@ <!-- RS check --> <button id="rsBtn" type="button" class="btn btn-info">Check contact resistance</button> + <button id="getRsBtn" type="button" class="btn btn-info">Get contact resistance</button> <button id="rsClearBtn" type="button" class="btn btn-info">Clear plot</button> <div id="rs"></div> @@ -60,12 +62,12 @@ <!-- <button id="invertBtn" type="button" class="btn btn-primary">Invert</button> --> <a id="download"></a> - <!-- Modal for configuration --> + <!-- Modal for settings --> <div class="modal fade" id="exampleModal" tabindex="-1" role="dialog" aria-labelledby="exampleModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> - <h5 class="modal-title" id="exampleModalLabel">OhmPi configuration</h5> + <h5 class="modal-title" id="exampleModalLabel">OhmPi settings</h5> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> @@ -75,13 +77,13 @@ <div class="form-group row"> <label for="nbElectrodes" class="col-sm-2 col-form-label">Nb electrodes</label> <div class="col-sm-10"> - <input type="number" class="form-control-number" id="nbElectrodes" value="64"> + <input type="number" class="form-control-number" id="nbElectrodes" value=64> </div> </div> <div class="form-group row"> <label for="injectionDuration" class="col-sm-2 col-form-label">Injection duration [s]</label> <div class="col-sm-10"> - <input type="number" class="form-control-number" id="injectionDuration" value="0.2"> + <input type="number" class="form-control-number" id="injectionDuration" value=0.2> </div> </div> <div class="form-group row"> @@ -139,6 +141,7 @@ let interv = null // hold interval for automatic data retrieval let quads = [] // available quadrupoles for time-serie figure let squads = [] // selected quadrupoles for time-serie figure + let elecSpacing = 1 // 1 m // useful functions function sendCommand(query, callback=null) { @@ -185,20 +188,23 @@ stopBtn.addEventListener('click', stopBtnFunc) // set configuration - function saveConfigBtnFunc() { + function saveSettingsBtnFunc() { // collect values from modal let formVals = {} - for (let field of ['nbElectrodes', 'injectionDuration', - 'nbMeasurements', 'sequenceDelay', 'nbStack']) { - formVals[field] = document.getElementById(field).value - } + formVals['nb_electrodes'] = parseInt(document.getElementById('nbElectrodes').value) + formVals['injection_duration'] = parseFloat(document.getElementById('injectionDuration').value) + formVals['nb_meas'] = parseInt(document.getElementById('nbMeasurements').value) + formVals['sequence_delay'] = parseInt(document.getElementById('sequenceDelay').value) + formVals['nb_stack'] = parseInt(document.getElementById('nbStack').value) + formVals['elec_spacing'] = parseFloat(document.getElementById('elecSpacing').value) console.log(formVals) + elecSpacing = formVals['elec_spacing'] // define callback to send settigs to Pi - function configCallback() { + function settingsCallback() { sendCommand(JSON.stringify({ 'cmd': 'update_settings', - 'config': formVals + 'config': formVals }), function(x) { console.log('update_settings', x) }) @@ -217,59 +223,95 @@ reader.addEventListener('load', () => { formVals['sequence'] = reader.result console.log('file==', reader.result) - configCallback() + settingsCallback() }, false) } else { console.log('no sequence uploaded') formVals['sequence'] = '' - configCallback() + settingsCallback() } } let saveConfigBtn = document.getElementById('saveConfigBtn') - saveConfigBtn.addEventListener('click', saveConfigBtnFunc) + saveConfigBtn.addEventListener('click', saveSettingsBtnFunc) // make pseudo plot - var trace = { - x: [], - y: [], - mode: 'markers', - marker: { - size: 40, - color: [], - colorbar: { - title: 'App. res. [Ohm.m]', - cmin: 0, - cmax: 100, - } - } - } - let layout = { - title: 'Pseudo-section', - yaxis: { - title: 'Pseudo-depth', - autorange: 'reversed' - }, - xaxis: { - title: 'X' - } + var trace = {} + let layout = {} + let tdata = [] + let layout2 = {} + let rsdata = [] + let rslayout = {} + + // initialize all plots + function initPlots() { + trace = { + x: [], + y: [], + mode: 'markers', + marker: { + size: 40, + color: [], + colorbar: { + title: 'App. res. [Ohm.m]', + cmin: 0, + cmax: 100, + } + } + } + layout = { + title: 'Pseudo-section', + yaxis: { + title: 'Pseudo-depth', + autorange: 'reversed' + }, + xaxis: { + title: 'X' + } - } - Plotly.newPlot('gd', [trace], layout) + } + Plotly.newPlot('gd', [trace], layout) - // make time-serie plot - let tdata = [] - let layout2 = { - title: 'Time-serie', - yaxis: { - title: 'App. res. [Ohm.m]' - }, - xaxis: { - title: 'Sampling time' - } - } - Plotly.newPlot('ts', tdata, layout2) + // make time-serie plot + tdata = [] + layout2 = { + title: 'Time-serie', + yaxis: { + title: 'App. res. [Ohm.m]' + }, + xaxis: { + title: 'Sampling time' + } + } + Plotly.newPlot('ts', tdata, layout2) + + // bar chart for contact resistance + rsdata = [] + rslayout = { + title: 'Contact resistances', + yaxis: { + title: 'Resistance [kOhm]' + }, + xaxis: { + title: 'Consecutive electrodes' + } + } + Plotly.newPlot('rs', rsdata, rslayout) + } + initPlots() + + // hover function + var hoverInfo = document.getElementById('hoverinfo') + document.getElementById('gd').on('plotly_hover', function(data){ + var infotext = data.points.map(function(d){ + return (Math.round(d.data.marker.color[d.pointIndex], 2) + ' Ohm.m'); + }); + hoverInfo.innerHTML = infotext.join('<br/>'); + }) + .on('plotly_unhover', function(data){ + hoverInfo.innerHTML = ''; + }); // add trace to time-serie plot function addTraceBtnFunc() { @@ -301,30 +343,135 @@ let surveyName = el['target'].value let df = data[surveyName] if (df != undefined) { - let a = df['a'] - let b = df['b'] - let m = df['m'] - let n = df['n'] // let's assume electrodes are 1 m distance // compute pseudo-depth (assume no topo) // compute app res (assumping flat, line survey) let xpos = [] let ypos = [] let app = [] - for (let i = 0; i < a.length; i++) { - let ab = (a[i] + b[i])/2 - let mn = (m[i] + n[i])/2 + for (let i = 0; i < df['a'].length; i++) { + let a = df['a'][i] + let b = df['b'][i] + let m = df['m'][i] + let n = df['n'][i] + + // compute geometric factor assuming flat 2D surface + let am = Math.abs(a - m)*elecSpacing + let bm = Math.abs(b - m)*elecSpacing + let an = Math.abs(a - n)*elecSpacing + let bn = Math.abs(b - n)*elecSpacing + let K = 2*Math.PI/((1/am)-(1/bm)-(1/an)+(1/bn)) + app.push(df['rho'][i]*K) + //console.log(K) // same as resipy for the wenner case + + // computing pseudo-depth assuming 2D flat array + // let's sort the electrodes AB are the two left, MN, the two right + let abmn = [a, b, m, n] + abmn = abmn.sort((a, b) => a - b) + let ab = (abmn[0] + abmn[1])/2 + let mn = (abmn[2] + abmn[3])/2 let dist = Math.abs(ab - mn) - xpos.push(Math.min(ab, mn) + dist/2) - ypos.push(Math.sqrt(2)/2*dist) - let am = Math.abs(a[i] - m[i]) - let bm = Math.abs(b[i] - m[i]) - let an = Math.abs(a[i] - n[i]) - let bn = Math.abs(a[i] - n[i]) - let K = (2*Math.PI)/((1/am)-(1/an)-(1/an)+(1/bn)) - app.push(df['rho'][i]*-K) - } - console.log(app) + xpos.push((Math.min(ab, mn) + dist/2)*elecSpacing) + ypos.push((Math.sqrt(2)/2*dist)*elecSpacing) + + /* + lookupDict = dict(zip(self.elec['label'], np.arange(self.elec.shape[0]))) + array = self.df[['a','b','m','n']].replace(lookupDict).values.astype(int) + elecm = self.elec[['x','y','z']].values.astype(float).copy() # electrode matrix - should be array of floats so np.inf work properly + + ### first determine if measurements are nested ### + #find mid points of AB + AB = (elecm[array[:,0]] + elecm[array[:,1]]) / 2 # mid points of AB + MN = (elecm[array[:,2]] + elecm[array[:,3]]) / 2 # mid points of MN + ABrad = np.sqrt(np.sum((elecm[array[:,0]] - AB)**2,axis=1)) # radius of AB circle + MNrad = np.sqrt(np.sum((elecm[array[:,2]] - MN)**2,axis=1)) # radius of MN circle + + Amn = np.sqrt(np.sum((elecm[array[:,0]] - MN)**2,axis=1)) # distance of A to mid point of MN + Bmn = np.sqrt(np.sum((elecm[array[:,1]] - MN)**2,axis=1)) # distance of B to mid point of MN + Nab = np.sqrt(np.sum((elecm[array[:,2]] - AB)**2,axis=1)) # distance of N to mid point of AB + Mab = np.sqrt(np.sum((elecm[array[:,3]] - AB)**2,axis=1)) # distance of M to mid point of AB + + iABinMN = (Amn < MNrad) & (Bmn < MNrad) + iMNinAB = (Nab < ABrad) & (Mab < ABrad) + inested = iABinMN | iMNinAB #if AB encompasses MN or MN encompasses AB + + # so it will never be taken as minimium + elecm[self.elec['remote'].values,:] = np.inf + + # compute midpoint position of AB and MN dipoles + elecx = elecm[:,0] + elecy = elecm[:,1] + + #CURRENT ELECTRODE MIDPOINTS + caddx = np.abs(elecx[array[:,0]]-elecx[array[:,1]])/2 + caddy = np.abs(elecy[array[:,0]]-elecy[array[:,1]])/2 + caddx[np.isinf(caddx)] = 0 + caddy[np.isinf(caddy)] = 0 + cmiddlex = np.min([elecx[array[:,0]], elecx[array[:,1]]], axis=0) + caddx + cmiddley = np.min([elecy[array[:,0]], elecy[array[:,1]]], axis=0) + caddy + + #POTENTIAL ELECTRODE MIDPOINTS + paddx = np.abs(elecx[array[:,2]]-elecx[array[:,3]])/2 + paddy = np.abs(elecy[array[:,2]]-elecy[array[:,3]])/2 + paddx[np.isinf(paddx)] = 0 + paddy[np.isinf(paddy)] = 0 + pmiddlex = np.min([elecx[array[:,2]], elecx[array[:,3]]], axis=0) + paddx + pmiddley = np.min([elecy[array[:,2]], elecy[array[:,3]]], axis=0) + paddy + + + # for non-nested measurements + xposNonNested = np.min([cmiddlex, pmiddlex], axis=0) + np.abs(cmiddlex-pmiddlex)/2 + yposNonNested = np.min([cmiddley, pmiddley], axis=0) + np.abs(cmiddley-pmiddley)/2 + pcdist = np.sqrt((cmiddlex-pmiddlex)**2 + (cmiddley-pmiddley)**2) + + # zposNonNested = np.sqrt(2)/2*pcdist + zposNonNested = pcdist/4 + + if np.all(cmiddley-pmiddley == 0): + zposNonNested = 0.25*pcdist + else: # for 3D arrays where there are mid-line measurements, this works closer to inversion results + zposNonNested = np.sqrt(2)/2*pcdist + + # for nested measurements use formula of Dalhin 2006 + xposNested = np.zeros(len(pmiddlex)) + yposNested = np.zeros(len(pmiddlex)) + outerElec1 = np.zeros((len(pmiddlex), 2)) # position of one electrode of outer dipole + outerElec2 = np.zeros((len(pmiddlex), 2)) # position of one electrode of outer dipole + # innerMid = np.zeros((len(pmiddlex), 2)) # middle of inner dipole + if np.sum(iMNinAB) > 0: + xposNested[iMNinAB] = pmiddlex[iMNinAB] + yposNested[iMNinAB] = pmiddley[iMNinAB] + outerElec1[iMNinAB] = np.c_[elecx[array[iMNinAB,0]], elecy[array[iMNinAB,0]]] + outerElec2[iMNinAB] = np.c_[elecx[array[iMNinAB,1]], elecy[array[iMNinAB,1]]] + + if np.sum(iABinMN) > 0: + xposNested[iABinMN] = cmiddlex[iABinMN] + yposNested[iABinMN] = cmiddley[iABinMN] + outerElec1[iABinMN] = np.c_[elecx[array[iABinMN,2]], elecy[array[iABinMN,2]]] + outerElec2[iABinMN] = np.c_[elecx[array[iABinMN,3]], elecy[array[iABinMN,3]]] + + innerMid = np.c_[pmiddlex, pmiddley] # always use potential dipole + + apdist = np.sqrt(np.sum((outerElec1-innerMid)**2, axis=1)) + bpdist = np.sqrt(np.sum((outerElec2-innerMid)**2, axis=1)) + zposNested = np.min([apdist, bpdist], axis=0)/3 + + xpos = np.zeros_like(pmiddlex) + ypos = np.zeros_like(pmiddlex) + zpos = np.zeros_like(pmiddlex) + + xpos[~inested] = xposNonNested[~inested] + xpos[inested] = xposNested[inested] + + ypos[~inested] = yposNonNested[~inested] + ypos[inested] = yposNested[inested] + + zpos[~inested] = zposNonNested[~inested] + zpos[inested] = zposNested[inested] + + */ + } + //console.log(app) // update the trace and redraw the figure trace['x'] = xpos trace['y'] = ypos @@ -335,23 +482,17 @@ } } let surveySelect = document.getElementById('surveySelect') - - // bar chart for contact resistance - let rsdata = [] - let rslayout = { - title: 'Contact resistances', - yaxis: { - title: 'Resistance [kOhm]' - }, - xaxis: { - title: 'Consecutive electrodes' - } - } - Plotly.newPlot('rs', rsdata, rslayout) // run RS check function rsBtnFunc() { - sendCommand('{"cmd": "rsCheck"}', function (res) { + sendCommand('{"cmd": "rsCheck"}', function (a) {}) + } + let rsBtn = document.getElementById('rsBtn') + rsBtn.addEventListener('click', rsBtnFunc) + + // get RS check data + function getRsBtnFunc() { + sendCommand('{"cmd": "getRsCheck"}', function(res) { // update the bar plot rsdata.push({ x: res['data']['AB'], @@ -362,8 +503,8 @@ Plotly.redraw('rs') }) } - let rsBtn = document.getElementById('rsBtn') - rsBtn.addEventListener('click', rsBtnFunc) + let getRsBtn = document.getElementById('getRsBtn') + getRsBtn.addEventListener('click', getRsBtnFunc) // clear RS graph function rsClearBtnFunc() { @@ -416,24 +557,28 @@ surveySelectFunc({'target': surveySelect}) // update list of quadrupoles if any - if (quads.length == 0) { + let idiff = false + if (data[surveyNames[0]] != undefined) { + idiff = quads.length != data[surveyNames[0]]['a'].length + } + //console.log('idiff=', idiff, quads.length, data[surveyNames[0]]['a'].length) + if (((quads.length == 0) | idiff) & (data[surveyNames[0]] != undefined)){ console.log('updating list of quadrupoles') - if (surveyNames.length > 0) { - let df = data[surveyNames[0]] - let quadSelect = document.getElementById('quadSelect') - quadSelect.innerHTML = '' - for (let i = 0; i < df['a'].length; i++) { - quad = [df['a'][i], df['b'][i], df['m'][i], df['n'][i]] - quads.push(quad) - let option = document.createElement('option') - option.value = quad.join(', ') - option.innerText = quad.join(', ') - quadSelect.appendChild(option) - } - console.log('quads=', quads) + quads = [] + let df = data[surveyNames[0]] + let quadSelect = document.getElementById('quadSelect') + quadSelect.innerHTML = '' + for (let i = 0; i < df['a'].length; i++) { + quad = [df['a'][i], df['b'][i], df['m'][i], df['n'][i]] + quads.push(quad) + let option = document.createElement('option') + option.value = quad.join(', ') + option.innerText = quad.join(', ') + quadSelect.appendChild(option) } + console.log('quads=', quads) } - + // update time-serie figure if (squads.length > 0) { @@ -486,7 +631,7 @@ capplyBtn.addEventListener('click', function() { surveySelectFunc({'target': surveySelect}) }) - + // checkbox interaction for data download function dataRetrievalCheckFunc(x) { if (x['target'].checked == true) { @@ -504,6 +649,7 @@ data = {} output.innerHTML = 'Status: ' + x['ohmpi_status'] + ' (all data cleared)' console.log('all data removed') + initPlots() // reset all plots }) } let removeDataBtn = document.getElementById('removeDataBtn') diff --git a/ohmpi.py b/ohmpi.py index ff36d078..d0678ae1 100644 --- a/ohmpi.py +++ b/ohmpi.py @@ -655,7 +655,7 @@ class OhmPi(object): (V3.0 only) Injection time in seconds used for finding the best voltage. """ self.exec_logger.debug('Starting measurement') - self.exec_logger.info('Waiting for data') + self.exec_logger.info('Waiting for data') # do we need this as info? debug is enough I think (gb) # check arguments if quad is None: @@ -936,7 +936,7 @@ class OhmPi(object): for i in range(0, quads.shape[0]): quad = quads[i, :] # quadrupole self.switch_mux_on(quad) # put before raising the pins (otherwise conflict i2c) - d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=1, tx_volt=tx_volt, autogain=False) + d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=0.2, tx_volt=tx_volt, autogain=False) if self.idps: voltage = tx_volt * 1000. # imposed voltage on dps5005 @@ -984,9 +984,9 @@ class OhmPi(object): Parameters ---------- filename : str - filename to save the last measurement dataframe + Filename to save the last measurement dataframe. last_measurement : dict - Last measurement taken in the form of a python dictionary + Last measurement taken in the form of a python dictionary. """ last_measurement = deepcopy(last_measurement) if 'fulldata' in last_measurement: @@ -1015,27 +1015,21 @@ class OhmPi(object): w.writerow(last_measurement) def _process_commands(self, message): - """Processes commands received from the controller(s) + """Process commands received from the controller(s). Parameters ---------- message : str - message containing a command and arguments or keywords and arguments + Message containing a command and arguments or keywords and arguments + that can be passed as a JSON string. """ - try: decoded_message = json.loads(message) print(f'decoded message: {decoded_message}') cmd_id = decoded_message.pop('cmd_id', None) cmd = decoded_message.pop('cmd', None) - args = decoded_message.pop('args', '[]') - if len(args) == 0: - args = f'["{args}"]' - args = json.loads(args) - kwargs = decoded_message.pop('kwargs', '{}') - if len(kwargs) == 0: - kwargs= '{}' - kwargs = json.loads(kwargs) + args = decoded_message.pop('args', []) + kwargs = decoded_message.pop('kwargs', {}) self.exec_logger.debug(f'Calling method {cmd}({args}, {kwargs})') status = False # e = None # NOTE: Why this? @@ -1059,9 +1053,17 @@ class OhmPi(object): reply = json.dumps(reply) self.exec_logger.debug(f'Execution report: {reply}') - def set_sequence(self, sequence=sequence): + def set_sequence(self, sequence=''): + """Set a sequence from a string of text. + + Parameters + ---------- + sequence : list of list of int + List of quadrupoles in formatted as [[A1, B1, M1, N1], [A2, B2, M2, N2], ...]. + """ try: - self.sequence = np.loadtxt(StringIO(sequence)).astype('uint32') + self.sequence = np.array(sequence).astype(int) + # self.sequence = np.loadtxt(StringIO(sequence)).astype('uint32') status = True except Exception as e: self.exec_logger.warning(f'Unable to set sequence: {e}') @@ -1115,7 +1117,7 @@ class OhmPi(object): # add command_id in dataset acquired_data.update({'cmd_id': cmd_id}) # log data to the data logger - self.data_logger.info(f'{acquired_data}') + # self.data_logger.info(f'{acquired_data}') # already in run_measurement() # save data and print in a text file self.append_and_save(filename, acquired_data) self.exec_logger.debug(f'quadrupole {i+1:d}/{n:d}') -- GitLab