import matplotlib.pyplot as plt import numpy as np from ohmpi.utils import parse_log import matplotlib plt.switch_backend('agg') # for multi-threading... def plot_exec_log(exec_log,names=None,last_session=True): # TODO: select session id instead of last session (if -1 : last) time, process_id, tag, msg, session = parse_log(exec_log) if last_session: time, process_id, tag, msg = time[session == max(session)], process_id[session == max(session)], \ tag[session == max(session)], msg[session == max(session)] events = msg[tag == 'EVENT'] category, name, state, time = np.empty(events.shape[0]).astype(str), np.empty(events.shape[0]).astype(str), \ np.empty(events.shape[0]).astype(str), np.empty(events.shape[0]).astype(str) for i, event in enumerate(events): category[i] = event.split("\t")[0] name[i] = event.split("\t")[1] state[i] = event.split("\t")[2] time[i] = event.split("\t")[3].replace('\n','') time = time.astype(np.datetime64) state = state[time.argsort()] category = category[time.argsort()] name = name[time.argsort()] time = np.sort(time) if names is None: names = dict.fromkeys(np.unique(category)) for cat in np.unique(category): names[cat] = np.array(np.unique(name[category == cat])) fig, ax = plt.subplots(len(names.keys()),sharex=True) if not isinstance(ax,np.ndarray): ax = np.array([ax]) for i, cat in enumerate(names.keys()): y = 0 for j, n in enumerate(names[cat]): cmap = matplotlib.cm.get_cmap('tab20') colors = [cmap(c/len(names[cat])) for c in range(len(names[cat]))] event_ids = np.where((name == n) & (category == cat))[0] y += 1 ax[i].set_title(cat) label = True for k, id in enumerate(event_ids[:-1]): if state[event_ids[k]] == 'begin' and state[event_ids[k+1]] == 'end': if label: ax[i].fill_betweenx([y,y+1],time[event_ids[k]],time[event_ids[k+1]],color=colors[j],label=n) label=False else: ax[i].fill_betweenx([y, y + 1], time[event_ids[k]], time[event_ids[k + 1]], color=colors[j]) y_labels = names[cat] y_label_pos = np.arange(len(names[cat]))+1.5 ax[i].set_yticks(y_label_pos) ax[i].set_yticklabels(y_labels) ax[i].legend() plt.show()