# -*- coding: utf-8 -*- """ created on January 6, 2020. Updates dec 2023; in-depth refactoring May 2023. Hardware: Licensed under CERN-OHL-S v2 or any later version Software: Licensed under the GNU General Public License v3.0 Ohmpi.py is a program to control a low-cost and open hardware resistivity meters within the OhmPi project by Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR) Olivier KAUFMANN (UMONS), Arnaud WATLET (UMONS) and Guillaume BLANCHY (FNRS/ULiege). """ import os import json from copy import deepcopy import numpy as np import csv import time from shutil import rmtree from threading import Thread from inspect import getmembers, isfunction from datetime import datetime from termcolor import colored from logging import DEBUG from ohmpi.utils import get_platform from ohmpi.logging_setup import setup_loggers from ohmpi.config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG import ohmpi.deprecated as deprecated from ohmpi.hardware_system import OhmPiHardware # finish import (done only when class is instantiated as some libs are only available on arm64 platform) try: arm64_imports = True except ImportError as error: if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG: print(colored(f'Import error: {error}', 'yellow')) arm64_imports = False except Exception as error: print(colored(f'Unexpected error: {error}', 'red')) arm64_imports = None VERSION = '3.0.0-alpha' class OhmPi(object): """ OhmPi class. """ def __init__(self, settings=None, sequence=None, mqtt=True, onpi=None): """Constructs the ohmpi object Parameters ---------- settings: sequence: mqtt: bool, defaut: True if True publish on mqtt topics while logging, otherwise use other loggers only onpi: bool,None default: None if None, the platform on which the class is instantiated is determined to set on_pi to either True or False. if False the behaviour of an ohmpi will be partially emulated and return random data. """ if onpi is None: _, onpi = get_platform() elif onpi: assert get_platform()[1] # Checks that the system actually runs on a pi if onpi is True self.on_pi = onpi # True if runs from the RaspberryPi with the hardware, otherwise False for random data # TODO : replace with dummy hardware? self._sequence = sequence self.nb_samples = 0 self.status = 'idle' # either running or idle self.thread = None # contains the handle for the thread taking the measurement # set loggers self.exec_logger, _, self.data_logger, _, self.soh_logger, _, _, msg = setup_loggers(mqtt=mqtt) print(msg) # specify loggers when instancing the hardware self._hw = OhmPiHardware(**{'exec_logger': self.exec_logger, 'data_logger': self.data_logger, 'soh_logger': self.soh_logger}) self.exec_logger.info('Hardware configured...') # default acquisition settings self.settings = { 'injection_duration': 0.2, 'nb_meas': 1, 'sequence_delay': 1, 'nb_stack': 1, 'export_path': 'data/measurement.csv' } # read in acquisition settings if settings is not None: self.update_settings(settings) self.exec_logger.debug('Initialized with settings:' + str(self.settings)) # read quadrupole sequence if sequence is not None: self.load_sequence(sequence) # set controller self.mqtt = mqtt self.cmd_id = None if self.mqtt: import paho.mqtt.client as mqtt_client self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" f" on {MQTT_CONTROL_CONFIG['hostname']} broker") def connect_mqtt() -> mqtt_client: def on_connect(mqttclient, userdata, flags, rc): if rc == 0: self.exec_logger.debug(f"Successfully connected to control broker:" f" {MQTT_CONTROL_CONFIG['hostname']}") else: self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}') client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False) client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'), MQTT_CONTROL_CONFIG['auth']['password']) client.on_connect = on_connect client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port']) return client try: self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}") self.controller = connect_mqtt() except Exception as e: self.exec_logger.debug(f'Unable to connect control broker: {e}') self.controller = None if self.controller is not None: self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}") try: self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos']) msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \ f" on {MQTT_CONTROL_CONFIG['hostname']} broker" self.exec_logger.debug(msg) print(colored(f'\u2611 {msg}', 'blue')) except Exception as e: self.exec_logger.warning(f'Unable to subscribe to control topic : {e}') self.controller = None publisher_config = MQTT_CONTROL_CONFIG.copy() publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic'] publisher_config.pop('ctrl_topic') def on_message(client, userdata, message): command = message.payload.decode('utf-8') self.exec_logger.debug(f'Received command {command}') self._process_commands(command) self.controller.on_message = on_message else: self.controller = None self.exec_logger.warning('No connection to control broker.' ' Use python/ipython to interact with OhmPi object...') @classmethod def get_deprecated_methods(cls): for i in getmembers(deprecated, isfunction): setattr(cls, i[0], i[1]) @staticmethod def append_and_save(filename: str, last_measurement: dict, cmd_id=None): """Appends and saves the last measurement dict. Parameters ---------- filename : str filename to save the last measurement dataframe last_measurement : dict Last measurement taken in the form of a python dictionary cmd_id : str, optional Unique command identifier """ last_measurement = deepcopy(last_measurement) if 'fulldata' in last_measurement: d = last_measurement['fulldata'] n = d.shape[0] if n > 1: idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0])) udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1])) tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2])) last_measurement.update(idic) last_measurement.update(udic) last_measurement.update(tdic) last_measurement.pop('fulldata') if os.path.isfile(filename): # Load data file and append data to it with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writerow(last_measurement) # last_measurement.to_csv(f, header=False) else: # create data file and add headers with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writeheader() w.writerow(last_measurement) @staticmethod def _find_identical_in_line(quads): """Finds quadrupole where A and B are identical. If A and B were connected to the same electrode, we would create a short-circuit. Parameters ---------- quads : numpy.ndarray List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad. Returns ------- output : numpy.ndarray 1D array of int List of index of rows where A and B are identical. """ # if we have a 1D array (so only 1 quadrupole), make it a 2D array if len(quads.shape) == 1: quads = quads[None, :] output = np.where(quads[:, 0] == quads[:, 1])[0] return output def get_data(self, survey_names=None, cmd_id=None): """Get available data. Parameters ---------- survey_names : list of str, optional List of filenames already available from the html interface. So their content won't be returned again. Only files not in the list will be read. cmd_id : str, optional Unique command identifier """ # get all .csv file in data folder if survey_names is None: survey_names = [] fnames = [fname for fname in os.listdir('data/') if fname[-4:] == '.csv'] ddic = {} if cmd_id is None: cmd_id = 'unknown' for fname in fnames: if ((fname != 'readme.txt') and ('_rs' not in fname) and (fname.replace('.csv', '') not in survey_names)): try: data = np.loadtxt('data/' + fname, delimiter=',', skiprows=1, usecols=(1, 2, 3, 4, 8)) data = data[None, :] if len(data.shape) == 1 else data ddic[fname.replace('.csv', '')] = { 'a': data[:, 0].astype(int).tolist(), 'b': data[:, 1].astype(int).tolist(), 'm': data[:, 2].astype(int).tolist(), 'n': data[:, 3].astype(int).tolist(), 'rho': data[:, 4].tolist(), } except Exception as e: print(fname, ':', e) rdic = {'cmd_id': cmd_id, 'data': ddic} self.data_logger.info(json.dumps(rdic)) return ddic def interrupt(self, cmd_id=None): """Interrupts the acquisition Parameters ---------- cmd_id : str, optional Unique command identifier """ self.status = 'stopping' if self.thread is not None: self.thread.join() self.exec_logger.debug('Interrupted sequence acquisition...') else: self.exec_logger.debug('No sequence measurement thread to interrupt.') self.exec_logger.debug(f'Status: {self.status}') def load_sequence(self, filename: str, cmd_id=None): """Reads quadrupole sequence from file. Parameters ---------- filename : str Path of the .csv or .txt file with A, B, M and N electrodes. Electrode index start at 1. cmd_id : str, optional Unique command identifier Returns ------- sequence : numpy.ndarray Array of shape (number quadrupoles * 4). """ self.exec_logger.debug(f'Loading sequence {filename}') sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32) # load quadrupole file if sequence is not None: self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.') # locate lines where electrode A == electrode B test_same_elec = self._find_identical_in_line(sequence) if len(test_same_elec) != 0: for i in range(len(test_same_elec)): self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}') sequence = None if sequence is not None: self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.') else: self.exec_logger.warning(f'Unable to load sequence {filename}') self.sequence = sequence def _process_commands(self, message: str): """Processes commands received from the controller(s) Parameters ---------- message : str message containing a command and arguments or keywords and arguments """ status = False cmd_id = '?' try: decoded_message = json.loads(message) self.exec_logger.debug(f'Decoded message {decoded_message}') cmd_id = decoded_message.pop('cmd_id', None) cmd = decoded_message.pop('cmd', None) kwargs = decoded_message.pop('kwargs', None) self.exec_logger.debug(f"Calling method {cmd}({str(kwargs) if kwargs is not None else ''})") if cmd_id is None: self.exec_logger.warning('You should use a unique identifier for cmd_id') if cmd is not None: try: if kwargs is None: output = getattr(self, cmd)() else: output = getattr(self, cmd)(**kwargs) status = True except Exception as e: self.exec_logger.error( f"Unable to execute {cmd}({str(kwargs) if kwargs is not None else ''}): {e}") status = False except Exception as e: self.exec_logger.warning(f'Unable to decode command {message}: {e}') status = False finally: reply = {'cmd_id': cmd_id, 'status': status} reply = json.dumps(reply) self.exec_logger.debug(f'Execution report: {reply}') def quit(self, cmd_id=None): """Quits OhmPi Parameters ---------- cmd_id : str, optional Unique command identifier """ self.exec_logger.debug(f'Quitting ohmpi.py following command {cmd_id}') exit() def _read_hardware_config(self): """Reads hardware configuration from config.py """ self.exec_logger.debug('Getting hardware config') self.id = OHMPI_CONFIG['id'] # ID of the OhmPi # self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm # self.Imax = OHMPI_CONFIG['Imax'] # maximum current # self.exec_logger.debug(f'The maximum current cannot be higher than {self.Imax} mA') # self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V # self.nb_samples = OHMPI_CONFIG['nb_samples'] # number of samples measured for each stack # self.version = OHMPI_CONFIG['version'] # hardware version # self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes # self.board_addresses = OHMPI_CONFIG['board_addresses'] # self.board_version = OHMPI_CONFIG['board_version'] # self.mcp_board_address = OHMPI_CONFIG['mcp_board_address'] self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}') def remove_data(self, cmd_id=None): """Remove all data in the data folder Parameters ---------- cmd_id : str, optional Unique command identifier """ self.exec_logger.debug(f'Removing all data following command {cmd_id}') rmtree('data') os.mkdir('data') def restart(self, cmd_id=None): """Restarts the Raspberry Pi Parameters ---------- cmd_id : str, optional Unique command identifier """ if self.on_pi: self.exec_logger.info(f'Restarting pi following command {cmd_id}...') os.system('reboot') else: self.exec_logger.warning('Not on Raspberry Pi, skipping reboot...') def run_measurement(self, quad=None, nb_stack=None, injection_duration=None, autogain=True, strategy='constant', tx_volt=5., best_tx_injtime=0.1, cmd_id=None, **kwargs): """Measures on a quadrupole and returns transfer resistance. Parameters ---------- quad : iterable (list of int) Quadrupole to measure, just for labelling. Only switch_mux_on/off really create the route to the electrodes. nb_stack : int, optional Number of stacks. A stack is considered two pulses (one positive, one negative). injection_duration : int, optional Injection time in seconds. best_tx_injtime: float, optional ??? autogain : bool, optional If True, will adapt the gain of the ADS1115 to maximize the resolution of the reading. strategy : str, optional (V3.0 only) If we search for best voltage (tx_volt == 0), we can choose vmax strategy : find the highest voltage that stays in the range For a constant value, just set the tx_volt. tx_volt : float, optional (V3.0 only) If specified, voltage will be imposed. If 0, we will look for the best voltage. cmd_id : str, optional Unique command identifier """ self.exec_logger.debug('Starting measurement') self.exec_logger.debug('Waiting for data') # check arguments if quad is None: quad = [0, 0, 0, 0] if nb_stack is None: nb_stack = self.settings['nb_stack'] if injection_duration is None: injection_duration = self.settings['injection_duration'] tx_volt = float(tx_volt) bypass_check = kwargs['bypass_check'] if 'bypass_check' in kwargs.keys() else False if self.switch_mux_on(quad, bypass_check=bypass_check, cmd_id=cmd_id): self._hw.vab_square_wave(tx_volt, cycle_length=injection_duration*2, cycles=nb_stack) d = { "time": datetime.now().isoformat(), "A": quad[0], "B": quad[1], "M": quad[2], "N": quad[3], "inj time [ms]": injection_duration, # NOTE: check this # "Vmn [mV]": sum_vmn / (2 * nb_stack), # "I [mA]": sum_i / (2 * nb_stack), # "R [ohm]": sum_vmn / sum_i, "Ps [mV]": self._hw.sp, "nbStack": nb_stack, "Tx [V]": tx_volt, "CPU temp [degC]": self._hw.ctl.cpu_temperature, "Nb samples [-]": len(self._hw.readings), # TODO: use only samples after a delay in each pulse "fulldata": self._hw.readings[:, [0, -2, -1]], # "I_stack [mA]": i_stack_mean, # "I_std [mA]": i_std, # "I_per_stack [mA]": np.array([np.mean(i_stack[i*2:i*2+2]) for i in range(nb_stack)]), # "Vmn_stack [mV]": vmn_stack_mean, # "Vmn_std [mV]": vmn_std, # "Vmn_per_stack [mV]": np.array([np.diff(np.mean(vmn_stack[i*2:i*2+2], axis=1))[0] / 2 for i in range(nb_stack)]), # "R_stack [ohm]": r_stack_mean, # "R_std [ohm]": r_stack_std, # "R_per_stack [Ohm]": np.mean([np.diff(np.mean(vmn_stack[i*2:i*2+2], axis=1)) / 2 for i in range(nb_stack)]) / np.array([np.mean(i_stack[i*2:i*2+2]) for i in range(nb_stack)]), # "PS_per_stack [mV]": np.array([np.mean(np.mean(vmn_stack[i*2:i*2+2], axis=1)) for i in range(nb_stack)]), # "PS_stack [mV]": ps_stack_mean, # "R_ab [ohm]": Rab } # to the data logger dd = d.copy() dd.pop('fulldata') # too much for logger dd.update({'A': str(dd['A'])}) dd.update({'B': str(dd['B'])}) dd.update({'M': str(dd['M'])}) dd.update({'N': str(dd['N'])}) # round float to 2 decimal for key in dd.keys(): # Check why this is applied on keys and not values... if isinstance(dd[key], float): dd[key] = np.round(dd[key], 3) dd['cmd_id'] = str(cmd_id) self.data_logger.info(dd) else: self.exec_logger.info(f'Skipping {quad}') self.switch_mux_off(quad, cmd_id) return d def run_multiple_sequences(self, cmd_id=None, sequence_delay=None, nb_meas=None, **kwargs): # NOTE : could be renamed repeat_sequence """Runs multiple sequences in a separate thread for monitoring mode. Can be stopped by 'OhmPi.interrupt()'. Additional arguments are passed to run_measurement(). Parameters ---------- cmd_id : str, optional Unique command identifier sequence_delay : int, optional Number of seconds at which the sequence must be started from each others. nb_meas : int, optional Number of time the sequence must be repeated. kwargs : dict, optional See help(k.run_measurement) for more info. """ # self.run = True if sequence_delay is None: sequence_delay = self.settings['sequence_delay'] sequence_delay = int(sequence_delay) if nb_meas is None: nb_meas = self.settings['nb_meas'] self.status = 'running' self.exec_logger.debug(f'Status: {self.status}') self.exec_logger.debug(f'Measuring sequence: {self.sequence}') def func(): for g in range(0, nb_meas): # for time-lapse monitoring if self.status == 'stopping': self.exec_logger.warning('Data acquisition interrupted') break t0 = time.time() self.run_sequence(**kwargs) # sleeping time between sequence dt = sequence_delay - (time.time() - t0) if dt < 0: dt = 0 if nb_meas > 1: time.sleep(dt) # waiting for next measurement (time-lapse) self.status = 'idle' self.thread = Thread(target=func) self.thread.start() def run_sequence(self, cmd_id=None, **kwargs): """Runs sequence synchronously (=blocking on main thread). Additional arguments are passed to run_measurement(). Parameters ---------- cmd_id : str, optional Unique command identifier """ self.status = 'running' self.exec_logger.debug(f'Status: {self.status}') self.exec_logger.debug(f'Measuring sequence: {self.sequence}') t0 = time.time() self.reset_mux() # create filename with timestamp filename = self.settings["export_path"].replace('.csv', f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv') self.exec_logger.debug(f'Saving to {filename}') # make sure all multiplexer are off # measure all quadrupole of the sequence if self.sequence is None: n = 1 else: n = self.sequence.shape[0] for i in range(0, n): if self.sequence is None: quad = np.array([0, 0, 0, 0]) else: quad = self.sequence[i, :] # quadrupole if self.status == 'stopping': break # if i == 0: # # call the switch_mux function to switch to the right electrodes # # switch on DPS # self.mcp_board = MCP23008(self.i2c, address=self.mcp_board_address) # self.pin2 = self.mcp_board.get_pin(2) # dsp - # self.pin2.direction = Direction.OUTPUT # self.pin2.value = True # self.pin3 = self.mcp_board.get_pin(3) # dsp - # self.pin3.direction = Direction.OUTPUT # self.pin3.value = True # time.sleep (4) # # #self.switch_dps('on') # time.sleep(.6) # self.switch_mux_on(quad) # run a measurement if self.on_pi: acquired_data = self.run_measurement(quad, **kwargs) else: # for testing, generate random data sum_vmn = np.random.rand(1)[0] * 1000. sum_i = np.random.rand(1)[0] * 100. cmd_id = np.random.randint(1000) acquired_data = { "time": datetime.now().isoformat(), "A": quad[0], "B": quad[1], "M": quad[2], "N": quad[3], "inj time [ms]": self.settings['injection_duration'] * 1000., "Vmn [mV]": sum_vmn, "I [mA]": sum_i, "R [ohm]": sum_vmn / sum_i, "Ps [mV]": np.random.randn(1)[0] * 100., "nbStack": self.settings['nb_stack'], "Tx [V]": np.random.randn(1)[0] * 5., "CPU temp [degC]": np.random.randn(1)[0] * 50., "Nb samples [-]": self.nb_samples, } self.data_logger.info(acquired_data) # # switch mux off # self.switch_mux_off(quad) # # # add command_id in dataset acquired_data.update({'cmd_id': cmd_id}) # log data to the data logger # self.data_logger.info(f'{acquired_data}') # save data and print in a text file self.append_and_save(filename, acquired_data) self.exec_logger.debug(f'quadrupole {i + 1:d}/{n:d}') # self.switch_dps('off') self.status = 'idle' def run_sequence_async(self, cmd_id=None, **kwargs): """Runs the sequence in a separate thread. Can be stopped by 'OhmPi.interrupt()'. Additional arguments are passed to run_measurement(). Parameters ---------- cmd_id : str, optional Unique command identifier """ def func(): self.run_sequence(**kwargs) self.thread = Thread(target=func) self.thread.start() self.status = 'idle' # TODO: we could build a smarter RS-Check by selecting adjacent electrodes based on their locations and try to # isolate electrodes that are responsible for high resistances (ex: AB high, AC low, BC high # -> might be a problem at B (cf what we did with WofE) def rs_check(self, tx_volt=12., cmd_id=None): """Checks contact resistances Parameters ---------- tx_volt : float Voltage of the injection cmd_id : str, optional Unique command identifier """ # create custom sequence where MN == AB # we only check the electrodes which are in the sequence (not all might be connected) if self.sequence is None: quads = np.array([[1, 2, 1, 2]], dtype=np.uint32) else: elec = np.sort(np.unique(self.sequence.flatten())) # assumed order quads = np.vstack([ elec[:-1], elec[1:], elec[:-1], elec[1:], ]).T # if self.idps: # quads[:, 2:] = 0 # we don't open Vmn to prevent burning the MN part # # as it has a smaller range of accepted voltage # create filename to store RS export_path_rs = self.settings['export_path'].replace('.csv', '') \ + '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv' # perform RS check self.status = 'running' self.reset_mux() # measure all quad of the RS sequence for i in range(0, quads.shape[0]): quad = quads[i, :] # quadrupole self.switch_mux_on(quad, bypass_check=True) # put before raising the pins (otherwise conflict i2c) d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=0.2, tx_volt=tx_volt, autogain=False, bypass_check=True) if self._hw.tx.voltage_adjustable: voltage = self._hw.tx.voltage # imposed voltage on dps else: voltage = self._hw.rx.voltage current = self._hw.tx.current # compute resistance measured (= contact resistance) resist = abs(voltage / current) / 1000. # print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format( # current, voltage, resist)) msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, ' \ f'V: {voltage :>10.3f} mV, ' \ f'R: {resist :>10.3f} kOhm' self.exec_logger.debug(msg) # if contact resistance = 0 -> we have a short circuit!! if resist < 1e-5: msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resist:.3f} kOhm' self.exec_logger.warning(msg) # save data in a text file self.append_and_save(export_path_rs, { 'A': quad[0], 'B': quad[1], 'RS [kOhm]': resist, }) # close mux path and put pin back to GND self.switch_mux_off(quad) self.status = 'idle' # # # TODO if interrupted, we would need to restore the values # # TODO or we offer the possibility in 'run_measurement' to have rs_check each time? def set_sequence(self, sequence=None, cmd_id=None): """Sets the sequence to acquire Parameters ---------- sequence : list, str sequence of quadrupoles cmd_id: str, optional Unique command identifier """ try: self.sequence = np.array(sequence).astype(int) # self.sequence = np.loadtxt(StringIO(sequence)).astype('uint32') status = True except Exception as e: self.exec_logger.warning(f'Unable to set sequence: {e}') status = False def switch_mux_on(self, quadrupole, bypass_check=False, cmd_id=None): """Switches on multiplexer relays for given quadrupole. Parameters ---------- cmd_id : str, optional Unique command identifier quadrupole : list of 4 int List of 4 integers representing the electrode numbers. bypass_check: bool, optional Bypasses checks for A==M or A==M or B==M or B==N (i.e. used for rs-check) """ assert len(quadrupole) == 4 if (self._hw.tx.pwr.voltage > self._hw.rx._voltage_max) and bypass_check: self.exec_logger.warning('Cannot bypass checking electrode roles because tx pwr voltage is over rx maximum voltage') self.exec_logger.debug(f'tx pwr voltage: {self._hw.tx.pwr.voltage}, rx max voltage: {self._hw.rx._voltage_max}') return False else: return self._hw.switch_mux(electrodes=quadrupole, state='on', bypass_check=bypass_check) def switch_mux_off(self, quadrupole, cmd_id=None): """Switches off multiplexer relays for given quadrupole. Parameters ---------- cmd_id : str, optional Unique command identifier quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ assert len(quadrupole) == 4 return self._hw.switch_mux(electrodes=quadrupole, state='off') def test_mux(self, activation_time=1.0, mux_id=None, cmd_id=None): # TODO: add this in the MUX code """Interactive method to test the multiplexer boards. Parameters ---------- activation_time : float, optional Time in seconds during which the relays are activated. mux_id : str, optional id of the mux_board to test cmd_id : str, optional Unique command identifier """ self.reset_mux() # All mux boards should be reset even if we only want to test one otherwise we might create a shortcut if mux_id is None: self._hw.test_mux(activation_time=activation_time) else: self._hw.mux_boards[mux_id].test(activation_time=activation_time) def reset_mux(self, cmd_id=None): """Switches off all multiplexer relays. Parameters ---------- cmd_id : str, optional Unique command identifier """ self._hw.reset_mux() def update_settings(self, settings: str, cmd_id=None): """Updates acquisition settings from a json file or dictionary. Parameters can be: - nb_electrodes (number of electrode used, if 4, no MUX needed) - injection_duration (in seconds) - nb_meas (total number of times the sequence will be run) - sequence_delay (delay in second between each sequence run) - nb_stack (number of stack for each quadrupole measurement) - export_path (path where to export the data, timestamp will be added to filename) Parameters ---------- settings : str, dict Path to the .json settings file or dictionary of settings. cmd_id : str, optional Unique command identifier """ status = False if settings is not None: try: if isinstance(settings, dict): self.settings.update(settings) else: with open(settings) as json_file: dic = json.load(json_file) self.settings.update(dic) self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings)) status = True except Exception as e: # noqa self.exec_logger.warning('Unable to update settings.') status = False else: self.exec_logger.warning('Settings are missing...') return status # Properties @property def sequence(self): """Gets sequence""" if self._sequence is not None: assert isinstance(self._sequence, np.ndarray) return self._sequence @sequence.setter def sequence(self, sequence): """Sets sequence""" if sequence is not None: assert isinstance(sequence, np.ndarray) self._sequence = sequence print(colored(r' ________________________________' + '\n' + r'| _ | | | || \/ || ___ \_ _|' + '\n' + r'| | | | |_| || . . || |_/ / | |' + '\n' + r'| | | | _ || |\/| || __/ | |' + '\n' + r'\ \_/ / | | || | | || | _| |_' + '\n' + r' \___/\_| |_/\_| |_/\_| \___/ ', 'red')) print('Version:', VERSION) platform, on_pi = get_platform() if on_pi: print(colored(f'\u2611 Running on {platform}', 'green')) # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...) # and emit a warning otherwise if not arm64_imports: print(colored(f'Warning: Required packages are missing.\n' f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow')) else: print(colored(f'\u26A0 Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow')) current_time = datetime.now() print(f'local date and time : {current_time.strftime("%Y-%m-%d %H:%M:%S")}') OhmPi.get_deprecated_methods() # for testing if __name__ == "__main__": ohmpi = OhmPi(settings=OHMPI_CONFIG['settings']) if ohmpi.controller is not None: ohmpi.controller.loop_forever()