# -*- coding: utf-8 -*- """ created on January 6, 2020. Update March 2022 Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by Rémi CLEMENT (INRAE),Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR) Olivier KAUFMANN (UMONS) and Guillaume BLANCHY (ILVO). """ import os import io import json import numpy as np import csv import time from datetime import datetime from termcolor import colored import threading from logging_setup import setup_loggers import minimalmodbus # for programmable power supply from copy import deepcopy # from mqtt_setup import mqtt_client_setup # finish import (done only when class is instantiated as some libs are only available on arm64 platform) try: import board # noqa import busio # noqa import adafruit_tca9548a # noqa import adafruit_ads1x15.ads1115 as ads # noqa from adafruit_ads1x15.analog_in import AnalogIn # noqa from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa from adafruit_mcp230xx.mcp23017 import MCP23017 # noqa import digitalio # noqa from digitalio import Direction # noqa from gpiozero import CPUTemperature # noqa arm64_imports = True except ImportError as error: print(colored(f'Import error: {error}', 'yellow')) arm64_imports = False except Exception as error: print(colored(f'Unexpected error: {error}', 'red')) exit() class OhmPi(object): """Create the main OhmPi object. Parameters ---------- config : str, optional Path to the .json configuration file. sequence : str, optional Path to the .txt where the sequence is read. By default, a 1 quadrupole sequence: 1, 2, 3, 4 is used. """ def __init__(self, config=None, sequence=None, mqtt=False, on_pi=None, idps=False): # flags and attributes if on_pi is None: _, on_pi = OhmPi.get_platform() self.sequence = sequence self.on_pi = on_pi # True if run from the RaspberryPi with the hardware, otherwise False for random data self.status = 'idle' # either running or idle self.run = False # flag is True when measuring self.thread = None # contains the handle for the thread taking the measurement self.path = 'data/' # where to save the .csv # set loggers config_exec_logger, _, config_data_logger, _, _ = setup_loggers(mqtt=mqtt) # TODO: add SOH self.data_logger = config_data_logger self.exec_logger = config_exec_logger self.soh_logger = None print('Loggers:') print(colored(f'Exec logger {self.exec_logger.handlers if self.exec_logger is not None else "None"}', 'blue')) print(colored(f'Data logger {self.data_logger.handlers if self.data_logger is not None else "None"}', 'blue')) print(colored(f'SOH logger {self.soh_logger.handlers if self.soh_logger is not None else "None"}', 'blue')) # read in hardware parameters (settings.py) self._read_hardware_parameters() # default acquisition parameters self.pardict = { 'injection_duration': 0.2, 'nbr_meas': 100, 'sequence_delay': 1, 'nb_stack': 1, 'export_path': 'data/measurement.csv' } # read in acquisition parameters if config is not None: self._read_acquisition_parameters(config) self.exec_logger.debug('Initialized with configuration:' + str(self.pardict)) # read quadrupole sequence if sequence is None: self.sequence = np.array([[1, 4, 2, 3]]) else: self.read_quad(sequence) self.idps = idps # flag to use dps for injection or not # connect to components on the OhmPi board if self.on_pi: # activation of I2C protocol self.i2c = busio.I2C(board.SCL, board.SDA) # noqa # I2C connexion to MCP23008, for current injection self.mcp = MCP23008(self.i2c, address=0x20) # ADS1115 for current measurement (AB) self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x49) # ADS1115 for voltage measurement (MN) self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x48) # current injection module if self.idps: self.DPS = minimalmodbus.Instrument(port='/dev/ttyUSB0', slaveaddress=1) # port name, slave address (in decimal) self.DPS.serial.baudrate = 9600 # Baud rate 9600 as listed in doc self.DPS.serial.bytesize = 8 # self.DPS.serial.timeout = 1 # greater than 0.5 for it to work self.DPS.debug = False # self.DPS.serial.parity = 'N' # No parity self.DPS.mode = minimalmodbus.MODE_RTU # RTU mode self.DPS.write_register(0x0001, 40, 0) # max current allowed (36 mA for relays) # (last number) 0 is for mA, 3 is for A # injection courant and measure (TODO check if it works, otherwise back in run_measurement()) self.pin0 = self.mcp.get_pin(0) self.pin0.direction = Direction.OUTPUT self.pin0.value = False self.pin1 = self.mcp.get_pin(1) self.pin1.direction = Direction.OUTPUT self.pin1.value = False def _read_acquisition_parameters(self, config): """Read acquisition parameters. Parameters can be: - nb_electrodes (number of electrode used, if 4, no MUX needed) - injection_duration (in seconds) - nbr_meas (total number of times the sequence will be run) - sequence_delay (delay in second between each sequence run) - nb_stack (number of stack for each quadrupole measurement) - export_path (path where to export the data, timestamp will be added to filename) Parameters ---------- config : str Path to the .json or dictionary. """ if isinstance(config, dict): self.pardict.update(config) else: with open(config) as json_file: dic = json.load(json_file) self.pardict.update(dic) self.exec_logger.debug('Acquisition parameters updated: ' + str(self.pardict)) def _read_hardware_parameters(self): """Read hardware parameters from config.py """ from config import OHMPI_CONFIG self.id = OHMPI_CONFIG['id'] # ID of the OhmPi self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm self.Imax = OHMPI_CONFIG['Imax'] # maximum current self.exec_logger.warning(f'The maximum current cannot be higher than {self.Imax} mA') self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V self.coef_p3 = OHMPI_CONFIG['coef_p3'] # slope for current conversion for ads.P3, measurement in V/V # self.offset_p2 = OHMPI_CONFIG['offset_p2'] parameter removed # self.offset_p3 = OHMPI_CONFIG['offset_p3'] parameter removed self.nb_samples = OHMPI_CONFIG['integer'] # number of samples measured for each stack self.version = OHMPI_CONFIG['version'] # hardware version self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes self.board_address = OHMPI_CONFIG['board_address'] self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}') @staticmethod def find_identical_in_line(quads): """Find quadrupole which where A and B are identical. If A and B are connected to the same relay, the Pi burns (short-circuit). Parameters ---------- quads : numpy.ndarray List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad. Returns ------- output : 1D array of int List of index of rows where A and B are identical. """ # TODO is this needed for M and N? # if we have a 1D array (so only 1 quadrupole), make it 2D if len(quads.shape) == 1: quads = quads[None, :] output = np.where(quads[:, 0] == quads[:, 1])[0] # output = [] # if array_object.ndim == 1: # temp = np.zeros(4) # for i in range(len(array_object)): # temp[i] = np.count_nonzero(array_object == array_object[i]) # if any(temp > 1): # output.append(0) # else: # for i in range(len(array_object[:,1])): # temp = np.zeros(len(array_object[1,:])) # for j in range(len(array_object[1,:])): # temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j]) # if any(temp > 1): # output.append(i) return output @staticmethod def get_platform(): """Get platform name and check if it is a raspberry pi Returns ======= str, bool name of the platform on which the code is running, boolean that is true if the platform is a raspberry pi""" platform = 'unknown' on_pi = False try: with io.open('/sys/firmware/devicetree/base/model', 'r') as f: platform = f.read().lower() if 'raspberry pi' in platform: on_pi = True except FileNotFoundError: pass return platform, on_pi def read_quad(self, filename): """Read quadrupole sequence from file. Parameters ---------- filename : str Path of the .csv or .txt file with A, B, M and N electrodes. Electrode index start at 1. Returns ------- output : numpy.ndarray Array of shape (number quadrupoles * 4). """ output = np.loadtxt(filename, delimiter=" ", dtype=int) # load quadrupole file # locate lines where the electrode index exceeds the maximum number of electrodes test_index_elec = np.array(np.where(output > self.max_elec)) # locate lines where electrode A == electrode B test_same_elec = self.find_identical_in_line(output) # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2) if test_index_elec.size != 0: for i in range(len(test_index_elec[0, :])): self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} ' f'exceeds the maximum number of electrodes') # sys.exit(1) output = None elif len(test_same_elec) != 0: for i in range(len(test_same_elec)): self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}') # sys.exit(1) output = None if output is not None: self.exec_logger.debug('Sequence of {:d} quadrupoles read.'.format(output.shape[0])) self.sequence = output def switch_mux(self, electrode_nr, state, role): """Select the right channel for the multiplexer cascade for a given electrode. Parameters ---------- electrode_nr : int Electrode index to be switched on or off. state : str Either 'on' or 'off'. role : str Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board. """ if self.sequence.max() <= 4: # only 4 electrodes so no MUX pass else: # choose with MUX board tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role]) # find I2C address of the electrode and corresponding relay # considering that one MCP23017 can cover 16 electrodes electrode_nr = electrode_nr - 1 # switch to 0 indexing i2c_address = 7 - electrode_nr // 16 # quotient without rest of the division relay_nr = electrode_nr - (electrode_nr // 16) * 16 relay_nr = relay_nr + 1 # switch back to 1 based indexing if i2c_address is not None: # select the MCP23017 of the selected MUX board mcp2 = MCP23017(tca[i2c_address]) mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT if state == 'on': mcp2.get_pin(relay_nr - 1).value = True else: mcp2.get_pin(relay_nr - 1).value = False self.exec_logger.debug(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}') else: self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}') def switch_mux_on(self, quadrupole): """ Switch on multiplexer relays for given quadrupole. Parameters ---------- quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ roles = ['A', 'B', 'M', 'N'] # another check to be sure A != B if quadrupole[0] != quadrupole[1]: for i in range(0, 4): if quadrupole[i] > 0: self.switch_mux(quadrupole[i], 'on', roles[i]) else: self.exec_logger.error('A == B -> short circuit risk detected!') def switch_mux_off(self, quadrupole): """ Switch off multiplexer relays for given quadrupole. Parameters ---------- quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ roles = ['A', 'B', 'M', 'N'] for i in range(0, 4): if quadrupole[i] > 0: self.switch_mux(quadrupole[i], 'off', roles[i]) def reset_mux(self): """Switch off all multiplexer relays.""" roles = ['A', 'B', 'M', 'N'] for i in range(0, 4): for j in range(1, self.max_elec + 1): self.switch_mux(j, 'off', roles[i]) self.exec_logger.debug('All MUX switched off.') def gain_auto(self, channel): """ Automatically set the gain on a channel Parameters ---------- channel: Returns ------- float """ gain = 2 / 3 if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023): gain = 2 elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508): gain = 4 elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250): gain = 8 elif abs(channel.voltage) < 0.256: gain = 16 self.exec_logger.debug(f'Setting gain to {gain}') return gain def compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5): """Estimating best Tx voltage based on different strategy. At first a half-cycle is made for a short duration with a fixed known voltage. This gives us Iab and Rab. We also measure Vmn. A constant c = vmn/iab is computed (only depends on geometric factor and ground resistivity, that doesn't change during a quadrupole). Then depending on the strategy, we compute which vab to inject to reach the minimum/maximum Iab current or min/max Vmn. This function also compute the polarity on Vmn (on which pin of the ADS1115 we need to measure Vmn to get the positive value). Parameters ---------- best_tx_injtime : float, optional Time in milliseconds for the half-cycle used to compute Rab. strategy : str, optional Either: - vmin : compute Vab to reach a minimum Iab and Vmn - vmax : compute Vab to reach a maximum Iab and Vmn - constant : apply given Vab tx_volt : float, optional Voltage apply to try to guess the best voltage. 5 V applied by default. If strategy "constant" is chosen, constant voltage to applied is "tx_volt". Returns ------- vab : float Proposed Vab according to the given strategy. polarity : int Either 1 or -1 to know on which pin of the ADS the Vmn is measured. """ # hardware limits voltage_min = 10 # mV voltage_max = 4500 current_min = voltage_min / (self.r_shunt * 50) # mA current_max = voltage_max / (self.r_shunt * 50) tx_max = 40 # volt # check of volt volt = tx_volt if volt > tx_max: print('sorry, cannot inject more than 40 V, set it back to 5 V') volt = 5 # redefined the pin of the mcp (needed when relays are connected) self.pin0 = self.mcp.get_pin(0) self.pin0.direction = Direction.OUTPUT self.pin0.value = False self.pin1 = self.mcp.get_pin(1) self.pin1.direction = Direction.OUTPUT self.pin1.value = False # select a polarity to start with self.pin0.value = True self.pin1.value = False # set voltage for test self.DPS.write_register(0x0000, volt, 2) self.DPS.write_register(0x09, 1) # DPS5005 on time.sleep(best_tx_injtime) # inject for given tx time # autogain self.ads_current = ads.ADS1115(self.i2c, gain=2/3, data_rate=860, address=0x49) self.ads_voltage = ads.ADS1115(self.i2c, gain=2/3, data_rate=860, address=0x48) print('current P0', AnalogIn(self.ads_current, ads.P0).voltage) print('voltage P0', AnalogIn(self.ads_voltage, ads.P0).voltage) print('voltage P2', AnalogIn(self.ads_voltage, ads.P2).voltage) gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0)) gain_voltage0 = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0)) gain_voltage2 = self.gain_auto(AnalogIn(self.ads_voltage, ads.P2)) gain_voltage = np.min([gain_voltage0, gain_voltage2]) print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage)) self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x49) self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x48) # we measure the voltage on both A0 and A2 to guess the polarity I = (AnalogIn(self.ads_current, ads.P0).voltage) * 1000/50/self.r_shunt # measure current U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000 # measure voltage U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000 print('I (mV)', I*50*self.r_shunt) print('I (mA)', I) print('U0 (mV)', U0) print('U2 (mV)', U2) # check polarity polarity = 1 # by default, we guessed it right vmn = U0 if U0 < 0: # we guessed it wrong, let's use a correction factor polarity = -1 vmn = U2 print('polarity', polarity) # compute constant c = vmn / I Rab = (volt * 1000) / I print('Rab', Rab) # implement different strategy if strategy == 'vmax': vmn_max = c * current_max if vmn_max < voltage_max and vmn_max > voltage_min: vab = current_max * Rab print('target max current') else: iab = voltage_max / c vab = iab * Rab print('target max voltage') if vab > 25000: vab = 25000 vab = vab / 1000 * 0.9 elif strategy == 'vmin': vmn_min = c * current_min if vmn_min > voltage_min and vmn_min < voltage_max: vab = current_min * Rab print('target min current') else: iab = voltage_min / c vab = iab * Rab print('target min voltage') if vab < 1000: vab = 1000 vab = vab / 1000 * 1.1 elif strategy == 'constant': vab = volt else: vab = 5 #self.DPS.write_register(0x09, 0) # DPS5005 off self.pin0.value = False self.pin1.value = False return vab, polarity def run_measurement(self, quad=[1, 2, 3, 4], nb_stack=None, injection_duration=None, autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1): """Do a 4 electrode measurement and measure transfer resistance obtained. Parameters ---------- quad : list of int Quadrupole to measure, just for labelling. Only switch_mux_on/off really create the route to the electrodes. nb_stack : int, optional Number of stacks. A stacl is considered two half-cycles (one positive, one negative). injection_duration : int, optional Injection time in seconds. autogain : bool, optional If True, will adapt the gain of the ADS1115 to maximize the resolution of the reading. strategy : str, optional (V3.0 only) If we search for best voltage (tx_volt == 0), we can choose different strategy: - vmin: find lowest voltage that gives us a signal - vmax: find max voltage that are in the range For a constant value, just set the tx_volt. tx_volt : float, optional (V3.0 only) If specified, voltage will be imposed. If 0, we will look for the best voltage. If a best Tx cannot be found, no measurement will be taken and values will be NaN. best_tx_injtime : float, optional (V3.0 only) Injection time in seconds used for finding the best voltage. """ # check arguments if nb_stack is None: nb_stack = self.pardict['nb_stack'] if injection_duration is None: injection_duration = self.pardict['injection_duration'] if tx_volt > 0: strategy == 'constant' else: tx_volt = 5 # inner variable initialization sum_i = 0 sum_vmn = 0 sum_ps = 0 self.exec_logger.debug('Starting measurement') self.exec_logger.info('Waiting for data') # let's define the pin again as if we run through measure() # as it's run in another thread, it doesn't consider these # and this can lead to short circuit! self.pin0 = self.mcp.get_pin(0) self.pin0.direction = Direction.OUTPUT self.pin0.value = False self.pin1 = self.mcp.get_pin(1) self.pin1.direction = Direction.OUTPUT self.pin1.value = False # get best voltage to inject AND polarity if self.idps: tx_volt, polarity = self.compute_tx_volt( best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt) print('tx volt V:', tx_volt) else: polarity = 1 # first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous) self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49, mode=0) self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48, mode=0) # turn on the power supply oor = False if self.idps: print('++++ tx_volt', tx_volt) if np.isnan(tx_volt) == False: self.DPS.write_register(0x0000, tx_volt, 2) # set tx voltage in V self.DPS.write_register(0x09, 1) # DPS5005 on time.sleep(0.05) else: print('no best voltage found, will not take measurement') oor = True if oor == False: if autogain: # compute autogain self.pin0.value = True self.pin1.value = False time.sleep(injection_duration) gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0)) if polarity > 0: gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0)) else: gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P2)) self.pin0.value = False self.pin1.value = False print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage)) self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x49, mode=0) self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x48, mode=0) self.pin0.value = False self.pin1.value = False # one stack = 2 half-cycles (one positive, one negative) pinMN = 0 if polarity > 0 else 2 # sampling for each stack at the end of the injection sampling_interval = 10 # ms self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1 # full data for waveform fulldata = [] # start counter # we sample every 10 ms (as using AnalogIn for both current # and voltage takes about 7 ms). When we go over the injection # duration, we break the loop and truncate the meas arrays # only the last values in meas will be taken into account start_time = time.time() for n in range(0, nb_stack * 2): # for each half-cycles # current injection if (n % 2) == 0: self.pin0.value = True self.pin1.value = False else: self.pin0.value = False self.pin1.value = True # current injection nr2 print('stack', n, self.pin0.value, self.pin1.value) # measurement of current i and voltage u during injection meas = np.zeros((self.nb_samples, 3)) * np.nan start_delay = time.time() # stating measurement time dt = 0 for k in range(0, self.nb_samples): # reading current value on ADS channels meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt) if pinMN == 0: meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000 else: meas[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000 *-1 time.sleep(sampling_interval / 1000) dt = time.time() - start_delay # real injection time (s) meas[k, 2] = time.time() - start_time if dt > (injection_duration - 0 * sampling_interval /1000): break # stop current injection self.pin0.value = False self.pin1.value = False end_delay = time.time() # truncate the meas array if we didn't fill the last samples meas = meas[:k+1] # measurement of current i and voltage u during off time measpp = np.zeros((meas.shape[0], 3)) * np.nan start_delay = time.time() # stating measurement time dt = 0 for k in range(0, measpp.shape[0]): # reading current value on ADS channels measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt) if pinMN == 0: measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000 else: measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000 *-1 time.sleep(sampling_interval / 1000) dt = time.time() - start_delay # real injection time (s) measpp[k, 2] = time.time() - start_time if dt > (injection_duration - 0 * sampling_interval /1000): break end_delay = time.time() # truncate the meas array if we didn't fill the last samples measpp = measpp[:k+1] # we alternate on which ADS1115 pin we measure because of sign of voltage if pinMN == 0: pinMN = 2 else: pinMN = 0 # store data for full wave form fulldata.append(meas) fulldata.append(measpp) # wait once the actual injection time between two injection # so it's a 50% duty cycle #print('crenaux (s)', (end_delay - start_delay)) #print('sleep for (s)', injection_duration - (end_delay - start_delay)) #print(meas) #print(measpp) # TODO get battery voltage and warn if battery is running low # TODO send a message on SOH stating the battery level # let's do some calculation (out of the stacking loop) for n, meas in enumerate(fulldata[::2]): # take average from the samples per stack, then sum them all # average for the last third of the stacked values # is done outside the loop sum_i = sum_i + (np.mean(meas[-int(meas.shape[0]//3):, 0])) vmn1 = np.mean(meas[-int(meas.shape[0]//3), 1]) if (n % 2) == 0: sum_vmn = sum_vmn - vmn1 sum_ps = sum_ps + vmn1 else: sum_vmn = sum_vmn + vmn1 sum_ps = sum_ps + vmn1 if self.idps: self.DPS.write_register(0x0000, 0, 2) # reset to 0 volt self.DPS.write_register(0x09, 0) # DPS5005 off print('off') else: sum_i = np.nan sum_vmn = np.nan sum_ps = np.nan # reshape full data to an array of good size # we need an array of regular size to save in the csv if oor == False: fulldata = np.vstack(fulldata) # we create a big enough array given nb_samples, number of # half-cycles (1 stack = 2 half-cycles), and twice as we # measure decay as well a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 3)) * np.nan a[:fulldata.shape[0], :] = fulldata fulldata = a else: np.array([[]]) # create a dictionary and compute averaged values from all stacks d = { "time": datetime.now().isoformat(), "A": quad[0], "B": quad[1], "M": quad[2], "N": quad[3], "inj time [ms]": (end_delay - start_delay) * 1000 if oor == False else 0, "Vmn [mV]": sum_vmn / (2 * nb_stack), "I [mA]": sum_i / (2 * nb_stack), "R [ohm]": sum_vmn / sum_i, "Ps [mV]": sum_ps / (2 * nb_stack), "nbStack": nb_stack, "Tx [V]": tx_volt if oor == False else 0, "CPU temp [degC]": CPUTemperature().temperature, "Nb samples [-]": self.nb_samples, "fulldata": fulldata, } a = deepcopy(d) a.pop('fulldata') print(a) # round number to two decimal for nicer string output output = [f'{k}\t' for k in d.keys()] output = str(output)[:-1] + '\n' for k in d.keys(): if isinstance(d[k], float): val = np.round(d[k], 2) else: val = d[k] output += f'{val}\t' output = output[:-1] self.exec_logger.debug(output) return d def rs_check(self, tx_volt=12): """ Check contact resistance. """ # create custom sequence where MN == AB # we only check the electrodes which are in the sequence (not all might be connected) elec = np.sort(np.unique(self.sequence.flatten())) # assumed order quads = np.vstack([ elec[:-1], elec[1:], elec[:-1], elec[1:], ]).T if self.idps: quads[:, 2:] = 0 # we don't open Vmn to prevent burning the MN part # as it has a smaller range of accepted voltage # create filename to store RS export_path_rs = self.pardict['export_path'].replace('.csv', '') \ + '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv' # perform RS check self.run = True self.status = 'running' # make sure all mux are off to start with self.reset_mux() # measure all quad of the RS sequence for i in range(0, quads.shape[0]): quad = quads[i, :] # quadrupole self.switch_mux_on(quad) # put before raising the pins (otherwise conflict i2c) d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=1, tx_volt=tx_volt, autogain=False) if self.idps: voltage = tx_volt # imposed voltage on dps5005 else: voltage = d['Vmn [mV]'] current = d['I [mA]'] # compute resistance measured (= contact resistance) resist = abs(voltage / current) / 1000 print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format( current, voltage, resist)) msg = 'Contact resistance {:s}: {:.3f} kOhm'.format( str(quad), resist) self.exec_logger.debug(msg) # if contact resistance = 0 -> we have a short circuit!! if resist < 1e-5: msg = '!!!SHORT CIRCUIT!!! {:s}: {:.3f} kOhm'.format( str(quad), resist) self.exec_logger.warning(msg) print(msg) # save data and print in a text file self.append_and_save(export_path_rs, { 'A': quad[0], 'B': quad[1], 'RS [kOhm]': resist, }) # close mux path and put pin back to GND self.switch_mux_off(quad) self.reset_mux() self.status = 'idle' self.run = False # # # TODO if interrupted, we would need to restore the values # # TODO or we offer the possiblity in 'run_measurement' to have rs_check each time? @staticmethod def append_and_save(filename, last_measurement): """Append and save last measurement dataframe. Parameters ---------- filename : str filename to save the last measurement dataframe last_measurement : dict Last measurement taken in the form of a python dictionary """ last_measurement = deepcopy(last_measurement) if 'fulldata' in last_measurement: d = last_measurement['fulldata'] n = d.shape[0] if n > 1: idic = dict(zip(['i' + str(i) for i in range(n)], d[:,0])) udic = dict(zip(['u' + str(i) for i in range(n)], d[:,1])) tdic = dict(zip(['t' + str(i) for i in range(n)], d[:,2])) last_measurement.update(idic) last_measurement.update(udic) last_measurement.update(tdic) last_measurement.pop('fulldata') if os.path.isfile(filename): # Load data file and append data to it with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writerow(last_measurement) # last_measurement.to_csv(f, header=False) else: # create data file and add headers with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writeheader() w.writerow(last_measurement) # last_measurement.to_csv(f, header=True) def measure(self, **kwargs): """Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'. """ self.run = True self.status = 'running' self.exec_logger.debug(f'Status: {self.status}') def func(): for g in range(0, self.pardict["nbr_meas"]): # for time-lapse monitoring if self.run is False: self.exec_logger.warning('Data acquisition interrupted') break t0 = time.time() # create filename with timestamp filename = self.pardict["export_path"].replace('.csv', f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv') self.exec_logger.debug(f'Saving to {filename}') # make sure all multiplexer are off self.reset_mux() # measure all quadrupole of the sequence for i in range(0, self.sequence.shape[0]): quad = self.sequence[i, :] # quadrupole if self.run is False: break # call the switch_mux function to switch to the right electrodes self.switch_mux_on(quad) # run a measurement if self.on_pi: current_measurement = self.run_measurement(quad, **kwargs) else: # for testing, generate random data current_measurement = { 'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]], 'R [ohm]': np.abs(np.random.randn(1)) } # switch mux off self.switch_mux_off(quad) # log data to the data logger self.data_logger.info(f'{current_measurement}') # save data and print in a text file self.append_and_save(filename, current_measurement) self.exec_logger.debug('{:d}/{:d}'.format(i + 1, self.sequence.shape[0])) # compute time needed to take measurement and subtract it from interval # between two sequence run (= sequence_delay) measuring_time = time.time() - t0 sleep_time = self.pardict["sequence_delay"] - measuring_time if sleep_time < 0: # it means that the measuring time took longer than the sequence delay sleep_time = 0 self.exec_logger.warning('The measuring time is longer than the sequence delay. ' 'Increase the sequence delay') # sleeping time between sequence if self.pardict["nbr_meas"] > 1: time.sleep(sleep_time) # waiting for next measurement (time-lapse) self.status = 'idle' self.thread = threading.Thread(target=func) self.thread.start() def stop(self): """Stop the acquisition. """ self.run = False if self.thread is not None: self.thread.join() self.exec_logger.debug(f'Status: {self.status}') VERSION = '2.1.0' print(colored(r' ________________________________' + '\n' + r'| _ | | | || \/ || ___ \_ _|' + '\n' + r'| | | | |_| || . . || |_/ / | |' + '\n' + r'| | | | _ || |\/| || __/ | |' + '\n' + r'\ \_/ / | | || | | || | _| |_' + '\n' + r' \___/\_| |_/\_| |_/\_| \___/ ', 'red')) print('OhmPi start') print('Version:', VERSION) platform, on_pi = OhmPi.get_platform() if on_pi: print(colored(f'Running on {platform} platform', 'green')) # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...) # and emit a warning otherwise if not arm64_imports: print(colored(f'Warning: Required packages are missing.\n' f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow')) else: print(colored(f'Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow')) current_time = datetime.now() print(current_time.strftime("%Y-%m-%d %H:%M:%S")) # for testing if __name__ == "__main__": ohmpi = OhmPi(config='ohmpi_param.json') ohmpi.run_measurement() #ohmpi.measure() #ohmpi.read_quad('breadboard.txt') #ohmpi.measure() #time.sleep(20) #ohmpi.stop()