# -*- coding: utf-8 -*- """ created on January 6, 2020. Update March 2022 Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by Rémi CLEMENT (INRAE),Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR) Olivier KAUFMANN (UMONS) and Guillaume BLANCHY (ILVO). """ import os import io import json import numpy as np import csv import time from datetime import datetime from termcolor import colored import threading from logging_setup import setup_loggers # finish import (done only when class is instantiated as some libs are only available on arm64 platform) try: import board # noqa import busio # noqa import adafruit_tca9548a # noqa import adafruit_ads1x15.ads1115 as ads # noqa from adafruit_ads1x15.analog_in import AnalogIn # noqa from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa from adafruit_mcp230xx.mcp23017 import MCP23017 # noqa import digitalio # noqa from digitalio import Direction # noqa from gpiozero import CPUTemperature # noqa arm64_imports = True except ImportError as error: print(colored(f'Import error: {error}', 'yellow')) arm64_imports = False except Exception as error: print(colored(f'Unexpected error: {error}', 'red')) exit() class OhmPi(object): """Create the main OhmPi object. Parameters ---------- config : str, optional Path to the .json configuration file. sequence : str, optional Path to the .txt where the sequence is read. By default, a 1 quadrupole sequence: 1, 2, 3, 4 is used. """ def __init__(self, config=None, sequence=None, mqtt=True, on_pi=None): # flags and attributes if on_pi is None: _, on_pi = OhmPi.get_platform() self.sequence = sequence self.on_pi = on_pi # True if run from the RaspberryPi with the hardware, otherwise False for random data self.status = 'idle' # either running or idle self.run = False # flag is True when measuring self.thread = None # contains the handle for the thread taking the measurement self.path = 'data/' # where to save the .csv # set loggers config_exec_logger, _, config_data_logger, _, _ = setup_loggers(mqtt=mqtt) # TODO: add SOH self.data_logger = config_data_logger self.exec_logger = config_exec_logger self.soh_logger = None print('Loggers:') print(colored(f'Exec logger {self.exec_logger.handlers if self.exec_logger is not None else "None"}', 'blue')) print(colored(f'Data logger {self.data_logger.handlers if self.data_logger is not None else "None"}', 'blue')) print(colored(f'SOH logger {self.soh_logger.handlers if self.soh_logger is not None else "None"}', 'blue')) # read in hardware parameters (settings.py) self._read_hardware_parameters() # default acquisition parameters self.pardict = { 'injection_duration': 0.2, 'nbr_meas': 100, 'sequence_delay': 1, 'nb_stack': 1, 'export_path': 'data/measurement.csv' } # read in acquisition parameters if config is not None: self._read_acquisition_parameters(config) self.exec_logger.debug('Initialized with configuration:' + str(self.pardict)) # read quadrupole sequence if sequence is None: self.sequence = np.array([[1, 2, 3, 4]]) else: self.read_quad(sequence) # connect to components on the OhmPi board if self.on_pi: # activation of I2C protocol self.i2c = busio.I2C(board.SCL, board.SDA) # noqa # I2C connexion to MCP23008, for current injection self.mcp = MCP23008(self.i2c, address=0x20) # ADS1115 for current measurement (AB) self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48) # ADS1115 for voltage measurement (MN) self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49) def _read_acquisition_parameters(self, config): """Read acquisition parameters. Parameters can be: - nb_electrodes (number of electrode used, if 4, no MUX needed) - injection_duration (in seconds) - nbr_meas (total number of times the sequence will be run) - sequence_delay (delay in second between each sequence run) - stack (number of stack for each quadrupole measurement) - export_path (path where to export the data, timestamp will be added to filename) Parameters ---------- config : str Path to the .json or dictionary. """ if isinstance(config, dict): self.pardict.update(config) else: with open(config) as json_file: dic = json.load(json_file) self.pardict.update(dic) self.exec_logger.debug('Acquisition parameters updated: ' + str(self.pardict)) def _read_hardware_parameters(self): """Read hardware parameters from settings.py. """ from config import OHMPI_CONFIG self.id = OHMPI_CONFIG['id'] # ID of the OhmPi self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm self.Imax = OHMPI_CONFIG['Imax'] # maximum current self.exec_logger.warning(f'The maximum current cannot be higher than {self.Imax} mA') self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V self.coef_p3 = OHMPI_CONFIG['coef_p3'] # slope for current conversion for ads.P3, measurement in V/V # self.offset_p2 = OHMPI_CONFIG['offset_p2'] parameter removed # self.offset_p3 = OHMPI_CONFIG['offset_p3'] parameter removed self.nb_samples = OHMPI_CONFIG['integer'] # number of samples measured for each stack self.version = OHMPI_CONFIG['version'] # hardware version self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes self.board_address = OHMPI_CONFIG['board_address'] self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}') @staticmethod def find_identical_in_line(quads): """Find quadrupole which where A and B are identical. If A and B are connected to the same relay, the Pi burns (short-circuit). Parameters ---------- quads : numpy.ndarray List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad. Returns ------- output : 1D array of int List of index of rows where A and B are identical. """ # TODO is this needed for M and N? # if we have a 1D array (so only 1 quadrupole), make it 2D if len(quads.shape) == 1: quads = quads[None, :] output = np.where(quads[:, 0] == quads[:, 1])[0] # output = [] # if array_object.ndim == 1: # temp = np.zeros(4) # for i in range(len(array_object)): # temp[i] = np.count_nonzero(array_object == array_object[i]) # if any(temp > 1): # output.append(0) # else: # for i in range(len(array_object[:,1])): # temp = np.zeros(len(array_object[1,:])) # for j in range(len(array_object[1,:])): # temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j]) # if any(temp > 1): # output.append(i) return output @staticmethod def get_platform(): """Get platform name and check if it is a raspberry pi""" platform = 'unknown' on_pi = False try: with io.open('/sys/firmware/devicetree/base/model', 'r') as f: platform = f.read().lower() if 'raspberry pi' in platform: on_pi = True except FileNotFoundError: pass return platform, on_pi def read_quad(self, filename): """Read quadrupole sequence from file. Parameters ---------- filename : str Path of the .csv or .txt file with A, B, M and N electrodes. Electrode index start at 1. Returns ------- sequence : numpy.array Array of shape (number quadrupoles * 4). """ sequence = np.loadtxt(filename, delimiter=" ", dtype=int) # load quadrupole file if sequence is not None: self.exec_logger.debug('Sequence of {:d} quadrupoles read.'.format(sequence.shape[0])) # locate lines where the electrode index exceeds the maximum number of electrodes test_index_elec = np.array(np.where(sequence > self.max_elec)) # locate lines where electrode A == electrode B test_same_elec = self.find_identical_in_line(sequence) # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2) if test_index_elec.size != 0: for i in range(len(test_index_elec[0, :])): self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} ' f'exceeds the maximum number of electrodes') # sys.exit(1) sequence = None elif len(test_same_elec) != 0: for i in range(len(test_same_elec)): self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}') # sys.exit(1) sequence = None if sequence is not None: self.exec_logger.info('Sequence of {:d} quadrupoles read.'.format(sequence.shape[0])) self.sequence = sequence def switch_mux(self, electrode_nr, state, role): """Select the right channel for the multiplexer cascade for a given electrode. Parameters ---------- electrode_nr : int Electrode index to be switched on or off. state : str Either 'on' or 'off'. role : str Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board. """ if self.sequence.max() <= 4: # only 4 electrodes so no MUX pass else: # choose with MUX board tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role]) # find I2C address of the electrode and corresponding relay # TODO from number of electrode, the below can be guessed # considering that one MCP23017 can cover 16 electrodes electrode_nr = electrode_nr - 1 # switch to 0 indexing i2c_address = 7 - electrode_nr // 16 # quotient without rest of the division relay_nr = electrode_nr - (electrode_nr // 16) * 16 relay_nr = relay_nr + 1 # switch back to 1 based indexing # if electrode_nr < 17: # i2c_address = 7 # relay_nr = electrode_nr # elif 16 < electrode_nr < 33: # i2c_address = 6 # relay_nr = electrode_nr - 16 # elif 32 < electrode_nr < 49: # i2c_address = 5 # relay_nr = electrode_nr - 32 # elif 48 < electrode_nr < 65: # i2c_address = 4 # relay_nr = electrode_nr - 48 if i2c_address is not None: # select the MCP23017 of the selected MUX board mcp2 = MCP23017(tca[i2c_address]) mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT if state == 'on': mcp2.get_pin(relay_nr - 1).value = True else: mcp2.get_pin(relay_nr - 1).value = False self.exec_logger.debug(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}') else: self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}') def switch_mux_on(self, quadrupole): """ Switch on multiplexer relays for given quadrupole. Parameters ---------- quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ roles = ['A', 'B', 'M', 'N'] # another check to be sure A != B if quadrupole[0] != quadrupole[1]: for i in range(0, 4): self.switch_mux(quadrupole[i], 'on', roles[i]) else: self.exec_logger.error('A == B -> short circuit risk detected!') def switch_mux_off(self, quadrupole): """ Switch off multiplexer relays for given quadrupole. Parameters ---------- quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ roles = ['A', 'B', 'M', 'N'] for i in range(0, 4): self.switch_mux(quadrupole[i], 'off', roles[i]) def reset_mux(self): """Switch off all multiplexer relays.""" roles = ['A', 'B', 'M', 'N'] for i in range(0, 4): for j in range(1, self.max_elec + 1): self.switch_mux(j, 'off', roles[i]) self.exec_logger.debug('All MUX switched off.') def gain_auto(self, channel): """ Automatically set the gain on a channel Parameters ---------- channel: Returns ------- float """ gain = 2 / 3 if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023): gain = 2 elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508): gain = 4 elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250): gain = 8 elif abs(channel.voltage) < 0.256: gain = 16 self.exec_logger.debug(f'Setting gain to {gain}') return gain def run_measurement(self, quad, nb_stack=None, injection_duration=None): """ Do a 4 electrode measurement and measure transfer resistance obtained. Parameters ---------- nb_stack : int, optional Number of stacks. injection_duration : int, optional Injection time in seconds. quad : list of int Quadrupole to measure. """ # TODO here we can add the current_injected or voltage_injected in mA or mV # check arguments if nb_stack is None: nb_stack = self.pardict['stack'] if injection_duration is None: injection_duration = self.pardict['injection_duration'] start_time = time.time() # inner variable initialization injection_current = 0 sum_vmn = 0 sum_ps = 0 # injection courant and measure pin0 = self.mcp.get_pin(0) pin0.direction = Direction.OUTPUT pin1 = self.mcp.get_pin(1) pin1.direction = Direction.OUTPUT pin0.value = False pin1.value = False self.exec_logger.debug('Starting measurement') self.exec_logger.info('Waiting for data') # FUNCTION AUTOGAIN # ADS1115 for current measurement (AB) self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48) # ADS1115 for voltage measurement (MN) self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49) # try auto gain pin1.value = True pin0.value = False time.sleep(injection_duration) gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0)) gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0, ads.P1)) pin0.value = False pin1.value = False print(gain_current) print(gain_voltage) self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x48) self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x49) # TODO I don't get why 3 + 2*nb_stack - 1? why not just range(nb_stack)? # or do we consider 1 stack = one full polarity? do we discard the first 3 readings? for n in range(0, 3 + 2 * nb_stack - 1): # current injection if (n % 2) == 0: pin1.value = True pin0.value = False # current injection polarity nr1 else: pin0.value = True pin1.value = False # current injection nr2 start_delay = time.time() # stating measurement time time.sleep(injection_duration) # delay depending on current injection duration # measurement of current i and voltage u # sampling for each stack at the end of the injection meas = np.zeros((self.nb_samples, 3)) for k in range(0, self.nb_samples): # reading current value on ADS channel A0 meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt) meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000 # reading voltage value on ADS channel A2 # meas[k, 2] = AnalogIn(self.ads_voltage, ads.P1).voltage * self.coef_p3 * 1000 # stop current injection pin1.value = False pin0.value = False end_delay = time.time() # take average from the samples per stack, then sum them all # average for all stack is done outside the loop injection_current = injection_current + (np.mean(meas[:, 0])) vmn1 = np.mean(meas[:, 1]) - np.mean(meas[:, 2]) if (n % 2) == 0: sum_vmn = sum_vmn - vmn1 sum_ps = sum_ps + vmn1 else: sum_vmn = sum_vmn + vmn1 sum_ps = sum_ps + vmn1 # TODO get battery voltage and warn if battery is running low end_calc = time.time() # TODO I am not sure I understand the computation below # wait twice the actual injection time between two injection # so it's a 50% duty cycle right? time.sleep(2 * (end_delay - start_delay) - (end_calc - start_delay)) # create a dictionary and compute averaged values from all stacks d = { "time": [datetime.now().isoformat()], "A": quad[0], "B": quad[1], "M": quad[2], "N": quad[3], "inj time [ms]": (end_delay - start_delay) * 1000, "Vmn [mV]": [(sum_vmn / (3 + 2 * nb_stack - 1))], "I [mA]": [(injection_current / (3 + 2 * nb_stack - 1))], "R [ohm]": [(sum_vmn / (3 + 2 * nb_stack - 1) / (injection_current / (3 + 2 * nb_stack - 1)))], "Ps [mV]": [(sum_ps / (3 + 2 * nb_stack - 1))], "nbStack": [nb_stack], "CPU temp [degC]": [CPUTemperature().temperature], "Time [s]": [(-start_time + time.time())], "Nb samples [-]": [self.nb_samples] } # round number to two decimal for nicer string output output = [f'{k}\t' for k in d.keys()] output = str(output)[:-1] + '\n' for k in d.keys(): if isinstance(d[k], float): val = np.round(d[k], 2) else: val = d[k] output += f'{val}\t' output = output[:-1] self.exec_logger.debug(output) time.sleep(1) # NOTE: why this? return d def rs_check(self): """ Check contact resistance. """ # create custom sequence where MN == AB nelec = self.sequence.max() # number of elec used in the sequence quads = np.vstack([ np.arange(nelec - 1) + 1, np.arange(nelec - 1) + 2, np.arange(nelec - 1) + 1, np.arange(nelec - 1) + 2 ]).T for i in range(0, quads.shape[0]): quad = quads[i, :] # quadrupole self.reset_mux() self.switch_mux_on(quad) pin0 = self.mcp.get_pin(0) pin0.direction = Direction.OUTPUT pin1 = self.mcp.get_pin(1) pin1.direction = Direction.OUTPUT pin0.value = False pin1.value = False print(quad) # call the switch_mux function to switch to the right electrodes self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48) # ADS1115 for voltage measurement (MN) self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49) pin1.value = True pin0.value = False time.sleep(0.2) current = AnalogIn(self.ads_current, ads.P0).voltage / (50 * self.r_shunt) voltage = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * 2.5 resistance = voltage / current # print(B) # print(A) print(abs(round(resistance / 1000, 1)), "kOhm") self.switch_mux_off(quad) pin0.value = False pin1.value = False # # create backup TODO not good # export_path = self.pardict['export_path'] # sequence = self.sequence.copy() # # # assign new value # self.pardict['export_path'] = export_path.replace('.csv', '_rs.csv') # self.sequence = quads # print(self.sequence) # # # run the RS check # self.log_exec('RS check (check contact resistance)', level='debug') # self.measure() # # # restore # self.pardict['export_path'] = export_path # self.sequence = sequence # # # TODO if interrupted, we would need to restore the values # # TODO or we offer the possiblity in 'run_measurement' to have rs_check each time? @staticmethod def append_and_save(filename, last_measurement): """Append and save last measurement dataframe. Parameters ---------- filename : str filename to save the last measurement dataframe last_measurement : dict Last measurement taken in the form of a python dictionary """ if os.path.isfile(filename): # Load data file and append data to it with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writerow(last_measurement) # last_measurement.to_csv(f, header=False) else: # create data file and add headers with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writeheader() w.writerow(last_measurement) # last_measurement.to_csv(f, header=True) def measure(self): """Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'. """ self.run = True self.status = 'running' self.exec_logger.debug(f'Status: {self.status}') def func(): for g in range(0, self.pardict["nbr_meas"]): # for time-lapse monitoring if self.run is False: self.exec_logger.warning('Data acquisition interrupted') break t0 = time.time() # create filename with timestamp filename = self.pardict["export_path"].replace('.csv', f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv') self.exec_logger.debug(f'Saving to {filename}') # make sure all multiplexer are off self.reset_mux() # measure all quadrupole of the sequence for i in range(0, self.sequence.shape[0]): quad = self.sequence[i, :] # quadrupole if self.run is False: break # call the switch_mux function to switch to the right electrodes self.switch_mux_on(quad) # run a measurement if self.on_pi: current_measurement = self.run_measurement(quad, self.pardict["stack"], self.pardict["injection_duration"]) else: # for testing, generate random data current_measurement = { 'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]], 'R [ohm]': np.abs(np.random.randn(1)) } # switch mux off self.switch_mux_off(quad) # log data to the data logger self.data_logger.info(f'{current_measurement}') # save data and print in a text file self.append_and_save(filename, current_measurement) self.exec_logger.debug('{:d}/{:d}'.format(i + 1, self.sequence.shape[0])) # compute time needed to take measurement and subtract it from interval # between two sequence run (= sequence_delay) measuring_time = time.time() - t0 sleep_time = self.pardict["sequence_delay"] - measuring_time if sleep_time < 0: # it means that the measuring time took longer than the sequence delay sleep_time = 0 self.exec_logger.warning('The measuring time is longer than the sequence delay. ' 'Increase the sequence delay') # sleeping time between sequence if self.pardict["nbr_meas"] > 1: time.sleep(sleep_time) # waiting for next measurement (time-lapse) self.status = 'idle' self.thread = threading.Thread(target=func) self.thread.start() def stop(self): """Stop the acquisition. """ self.run = False if self.thread is not None: self.thread.join() self.exec_logger.debug(f'Status: {self.status}') VERSION = '2.0.3' print(colored(r' ________________________________' + '\n' + r'| _ | | | || \/ || ___ \_ _|' + '\n' + r'| | | | |_| || . . || |_/ / | |' + '\n' + r'| | | | _ || |\/| || __/ | |' + '\n' + r'\ \_/ / | | || | | || | _| |_' + '\n' + r' \___/\_| |_/\_| |_/\_| \___/ ', 'red')) print('OhmPi start') print('Version:', VERSION) platform, on_pi = OhmPi.get_platform() if on_pi: print(colored(f'Running on {platform} platform', 'green')) # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...) # and emit a warning otherwise if not arm64_imports: print(colored(f'Warning: Required packages are missing.\n' f'Please run . env.sh at command prompt to update your virtual environment\n', 'yellow')) else: print(colored(f'Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow')) current_time = datetime.now() print(current_time.strftime("%Y-%m-%d %H:%M:%S")) # for testing if __name__ == "__main__": ohmpi = OhmPi(config='ohmpi_param.json') ohmpi.measure() time.sleep(4) ohmpi.stop()