import datetime import importlib from ohmpi.config import HARDWARE_CONFIG # TODO: Remove references at config here -> move it in ohmpi_hardware as done for mux_2024 import adafruit_ads1x15.ads1115 as ads # noqa from adafruit_ads1x15.analog_in import AnalogIn # noqa from adafruit_ads1x15.ads1x15 import Mode # noqa from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa from digitalio import Direction # noqa import minimalmodbus # noqa from busio import I2C # noqa import time import numpy as np import os from ohmpi.hardware_components import TxAbstract, RxAbstract from ohmpi.utils import enforce_specs # ctl_name = HARDWARE_CONFIG['ctl'].pop('board_name', 'raspberry_pi') # ctl_connection = HARDWARE_CONFIG['ctl'].pop('connection', 'i2c') # ctl_module = importlib.import_module(f'ohmpi.hardware_components.{ctl_name}') # # TX_CONFIG = HARDWARE_CONFIG['tx'] # RX_CONFIG = HARDWARE_CONFIG['rx'] # hardware characteristics and limitations # voltages are given in mV, currents in mA, sampling rates in Hz and data_rate in S/s SPECS = {'rx': {'sampling_rate': {'min': 2., 'default': 10., 'max': 100.}, 'data_rate': {'default': 860.}, 'bias': {'min': -5000., 'default': 0., 'max': 5000.}, 'coef_p2': {'default': 2.50}, 'voltage_min': {'default': 10.0}, }, 'tx': {'adc_voltage_min': {'default': 10.}, # Minimum voltage value used in vmin strategy 'adc_voltage_max': {'default': 4500.}, # Maximum voltage on ads1115 used to measure current 'voltage_max': {'min': 0., 'default': 12., 'max': 12.}, # Maximum input voltage 'data_rate': {'default': 860.}, 'compatible_power_sources': {'default': 'pwr_batt', 'others' : ['dps5005']}, 'r_shunt': {'min': 0., 'default': 2. }, 'activation_delay': {'default': 0.005}, # Max turn on time of 211EH relays = 5ms 'release_delay': {'default': 0.001}, # Max turn off time of 211EH relays = 1ms }} # TODO: move low_battery spec in pwr # # # hardware characteristics and limitations # # *** RX *** # # ADC for voltage # voltage_adc_voltage_min = 10. # mV # voltage_adc_voltage_max = 4500. # mV # sampling_rate = 20. # Hz # data_rate = 860. # S/s? # rx_mcp_board_address = 0x27 # RX_CONFIG['voltage_min'] = np.min([voltage_adc_voltage_min, RX_CONFIG.pop('voltage_min', np.inf)]) # mV # RX_CONFIG['voltage_max'] = np.min([voltage_adc_voltage_max, RX_CONFIG.pop('voltage_max', np.inf)]) # mV # RX_CONFIG['sampling_rate'] = RX_CONFIG.pop('sampling_rate', sampling_rate) # RX_CONFIG['data_rate'] = RX_CONFIG.pop('data_rate', data_rate) # # RX_CONFIG['coef_p2'] = RX_CONFIG.pop('coef_p2', 2.5) # RX_CONFIG['latency'] = RX_CONFIG.pop('latency', 0.01) # RX_CONFIG['bias'] = RX_CONFIG.pop('bias', 0.) # RX_CONFIG['mcp_board_address'] = TX_CONFIG.pop('mcp_board_address', tx_mcp_board_address) # # # # *** TX *** # # ADC for current # current_adc_voltage_min = 10. # mV # current_adc_voltage_max = 4500. # mV # low_battery = 12. # V (conventional value as it is not measured on this board) # tx_mcp_board_address = 0x21 # # # pwr_voltage_max = 12. # V # # pwr_default_voltage = 12. # V # # pwr_switch_on_warmup = 0. # seconds # # TX_CONFIG['current_min'] = np.min([current_adc_voltage_min / (TX_CONFIG['r_shunt'] * 50), # TX_CONFIG.pop('current_min', np.inf)]) # mA # TX_CONFIG['current_max'] = np.min([current_adc_voltage_max / (TX_CONFIG['r_shunt'] * 50), # TX_CONFIG.pop('current_max', np.inf)]) # mA # # TX_CONFIG['voltage_max'] = np.min([pwr_voltage_max, TX_CONFIG.pop('voltage_max', np.inf)]) # V # TX_CONFIG['voltage_max'] = TX_CONFIG.pop('voltage_max', np.inf) # V # TX_CONFIG['voltage_min'] = -TX_CONFIG['voltage_max'] # V # TX_CONFIG['default_voltage'] = np.min([TX_CONFIG.pop('default_voltage', np.inf), TX_CONFIG['voltage_max']]) # V # # TX_CONFIG['pwr_switch_on_warm_up'] = TX_CONFIG.pop('pwr_switch_on_warmup', pwr_switch_on_warmup) # TX_CONFIG['mcp_board_address'] = TX_CONFIG.pop('mcp_board_address', tx_mcp_board_address) # TX_CONFIG['low_battery'] = TX_CONFIG.pop('low_battery', low_battery) # TX_CONFIG['latency'] = TX_CONFIG.pop('latency', 0.01) # TX_CONFIG['bias'] = TX_CONFIG.pop('bias', 0.) def _gain_auto(channel): """Automatically sets the gain on a channel Parameters ---------- channel : ads.ADS1x15 Instance of ADS where voltage is measured. Returns ------- gain : float Gain to be applied on ADS1115. """ gain = 2 / 3 if (abs(channel.voltage) < 2.048) and (abs(channel.voltage) >= 1.024): gain = 2 elif (abs(channel.voltage) < 1.024) and (abs(channel.voltage) >= 0.512): gain = 4 elif (abs(channel.voltage) < 0.512) and (abs(channel.voltage) >= 0.256): gain = 8 elif abs(channel.voltage) < 0.256: gain = 16 return gain class Tx(TxAbstract): def __init__(self, **kwargs): for key in SPECS['tx'].keys(): kwargs = enforce_specs(kwargs, SPECS['tx'], key) kwargs.update({'board_name': os.path.basename(__file__).rstrip('.py')}) super().__init__(**kwargs) assert isinstance(self.connection, I2C) kwargs.update({'pwr': kwargs.pop('pwr', SPECS['tx']['compatible_power_sources']['default'])}) if (kwargs['pwr'] != SPECS['tx']['compatible_power_sources']['default'] and kwargs['pwr'] not in SPECS['tx']['compatible_power_sources']['other']): self.exec_logger.warning(f'Incompatible power source specified check config') assert kwargs['pwr'] in SPECS['tx'] # self.pwr = None # TODO: set a list of compatible power system with the tx self.exec_logger.event(f'{self.board_name}\ttx_init\tbegin\t{datetime.datetime.utcnow()}') # self.voltage_max = kwargs['voltage_max'] # TODO: check if used self._activation_delay = kwargs['activation_delay'] self._release_delay = kwargs['release_delay'] self.voltage_adjustable = False self.current_adjustable = False # I2C connexion to MCP23008, for current injection self.mcp_board = MCP23008(self.connection, address=0x21) # ADS1115 for current measurement (AB) self._ads_current_address = 0x48 self._ads_current_data_rate = kwargs['data_rate'] self._ads_current = ads.ADS1115(self.connection, gain=self.adc_gain, data_rate=self._ads_current_data_rate, address=self._ads_current_address) self._ads_current.mode = Mode.CONTINUOUS self.r_shunt = kwargs['r_shunt'] self.adc_voltage_min = kwargs['adc_voltage_min'] self.adc_voltage_max = kwargs['adc_voltage_max'] # Relays for pulse polarity self.pin0 = self.mcp_board.get_pin(0) self.pin0.direction = Direction.OUTPUT self.pin1 = self.mcp_board.get_pin(1) self.pin1.direction = Direction.OUTPUT self.polarity = 0 self.gain = 2 / 3 # Initialize LEDs self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run self.pin4.direction = Direction.OUTPUT self.pin4.value = True self._latency = kwargs.pop('latency', TX_CONFIG['latency']) self._bias = kwargs.pop('bias', TX_CONFIG['bias']) self.exec_logger.event(f'{self.board_name}\ttx_init\tend\t{datetime.datetime.utcnow()}') @property def gain(self): return self._adc_gain @gain.setter def gain(self, value): assert value in [2/3, 2, 4, 8, 16] self._adc_gain = value self._ads_current = ads.ADS1115(self.connection, gain=self.adc_gain, data_rate=SPECS['tx']['data_rate']['default'], address=self._ads_current_address) self._ads_current.mode = Mode.CONTINUOUS self.exec_logger.debug(f'Setting TX ADC gain to {value}') def _adc_gain_auto(self): self.exec_logger.event(f'{self.board_name}\ttx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}') gain = _gain_auto(AnalogIn(self._ads_current, ads.P0)) self.exec_logger.debug(f'Setting TX ADC gain automatically to {gain}') self.gain = gain self.exec_logger.event(f'{self.board_name}\ttx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}') def current_pulse(self, **kwargs): TxAbstract.current_pulse(self, **kwargs) self.exec_logger.warning(f'Current pulse is not implemented for the {self.board_name} board') @property def current(self): """ Gets the current IAB in Amps """ iab = AnalogIn(self._ads_current, ads.P0).voltage * 1000. / (50 * self.r_shunt) # measure current self.exec_logger.debug(f'Reading TX current: {iab} mA') return iab @ current.setter def current(self, value): assert self.adc_voltage_min / (50 * self.r_shunt) <= value <= self.adc_voltage_max / (50 * self.r_shunt) self.exec_logger.warning(f'Current pulse is not implemented for the {self.board_name} board') def gain_auto(self): self._adc_gain_auto() def inject(self, polarity=1, injection_duration=None): self.polarity = polarity TxAbstract.inject(self, polarity=polarity, injection_duration=injection_duration) @property def polarity(self): return self._polarity @polarity.setter def polarity(self, polarity): assert polarity in [-1, 0, 1] self._polarity = polarity if polarity == 1: self.pin0.value = True self.pin1.value = False time.sleep(self._activation_delay) # Max turn on time of 211EH relays = 5ms elif polarity == -1: self.pin0.value = False self.pin1.value = True time.sleep(self._activation_delay) # Max turn on time of 211EH relays = 5ms else: self.pin0.value = False self.pin1.value = False time.sleep(self._release_delay) # Max turn off time of 211EH relays = 1ms def turn_off(self): self.pwr.turn_off(self) def turn_on(self): self.pwr.turn_on(self) @property def tx_bat(self): self.soh_logger.warning(f'Cannot get battery voltage on {self.board_name}') self.exec_logger.debug(f'{self.board_name} cannot read battery voltage. Returning default battery voltage.') return self.pwr.voltage def voltage_pulse(self, voltage=None, length=None, polarity=1): """ Generates a square voltage pulse Parameters ---------- voltage: float, optional Voltage to apply in volts, tx_v_def is applied if omitted. length: float, optional Length of the pulse in seconds polarity: 1,0,-1 Polarity of the pulse """ self.exec_logger.event(f'{self.board_name}\ttx_voltage_pulse\tbegin\t{datetime.datetime.utcnow()}') # self.exec_logger.info(f'injection_duration: {length}') # TODO: delete me if length is None: length = self.injection_duration if voltage is not None: self.pwr.voltage = voltage self.exec_logger.debug(f'Voltage pulse of {polarity*self.pwr.voltage:.3f} V for {length:.3f} s') self.inject(polarity=polarity, injection_duration=length) self.exec_logger.event(f'{self.board_name}\ttx_voltage_pulse\tend\t{datetime.datetime.utcnow()}') class Rx(RxAbstract): def __init__(self, **kwargs): for key in SPECS['rx'].keys(): kwargs = enforce_specs(kwargs, SPECS['rx'], key) kwargs.update({'board_name': os.path.basename(__file__).rstrip('.py')}) super().__init__(**kwargs) assert isinstance(self.connection, I2C) self.exec_logger.event(f'{self.board_name}\trx_init\tbegin\t{datetime.datetime.utcnow()}') # I2C connexion to MCP23008, for DG411 self.mcp_board = MCP23008(self.connection, address=0x27) # ADS1115 for voltage measurement (MN) self._ads_voltage_address = 0x49 self._adc_gain = 2/3 self._ads_voltage = ads.ADS1115(self.connection, gain=self._adc_gain, data_rate=SPECS['rx']['data_rate']['default'], address=self._ads_voltage_address) self._ads_voltage.mode = Mode.CONTINUOUS self._coef_p2 = kwargs['coef_p2'] # self._voltage_max = kwargs['voltage_max'] self._sampling_rate = kwargs['sampling_rate'] self._bias = kwargs['bias'] self.exec_logger.event(f'{self.board_name}\trx_init\tend\t{datetime.datetime.utcnow()}') self.pin_DG0 = self.mcp_board.get_pin(0) self.pin_DG0.direction = Direction.OUTPUT self.pin_DG1 = self.mcp_board.get_pin(1) self.pin_DG1.direction = Direction.OUTPUT self.pin_DG2 = self.mcp_board.get_pin(2) self.pin_DG2.direction = Direction.OUTPUT self.pin_DG0.value = True # open self.pin_DG1.value = True # open gain 1 inactive self.pin_DG2.value = False # close gain 0.5 active self._voltage_gain = 0.5 @property def gain(self): return self._adc_gain @gain.setter def gain(self, value): assert value in [2/3, 2, 4, 8, 16] self._adc_gain = value self._ads_voltage = ads.ADS1115(self.connection, gain=self.adc_gain, data_rate=SPECS['rx']['data_rate']['default'], address=self._ads_voltage_address) self._ads_voltage.mode = Mode.CONTINUOUS self.exec_logger.debug(f'Setting RX ADC gain to {value}') def _adc_gain_auto(self): self.exec_logger.event(f'{self.board_name}\trx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}') gain_0 = _gain_auto(AnalogIn(self._ads_voltage, ads.P0)) gain_2 = _gain_auto(AnalogIn(self._ads_voltage, ads.P2)) gain = np.min([gain_0, gain_2]) self.exec_logger.debug(f'Setting RX ADC gain automatically to {gain}') self.gain = gain self.exec_logger.event(f'{self.board_name}\trx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}') def gain_auto(self): self._adc_gain_auto() @property def voltage(self): """ Gets the voltage VMN in Volts """ self.exec_logger.event(f'{self.board_name}\trx_voltage\tbegin\t{datetime.datetime.utcnow()}') u = -AnalogIn(self._ads_voltage, ads.P0, ads.P1).voltage * self._coef_p2 * 1000. - self._bias # TODO: check if it should be negated self.exec_logger.event(f'{self.board_name}\trx_voltage\tend\t{datetime.datetime.utcnow()}') return u @property def voltage_gain(self): return self._voltage_gain @voltage_gain.setter def voltage_gain(self,value): assert value in [0.5, 1] self._voltage_gain = value if self._voltage_gain == 1: self.pin_DG1.value = False # closed gain 1 active self.pin_DG2.value = True # open gain 0.5 inactive elif self._voltage_gain == 0.5: self.pin_DG1.value = True # closed gain 1 active self.pin_DG2.value = False # open gain 0.5 inactive def voltage_gain_auto(self): u = ((AnalogIn(self.ads_voltage, ads.P0).voltage * 1000) - self.vmn_hardware_offset) / self.voltage_gain if abs(vmn1) < 2500 and abs(vmn2) < 2500: ###TODO change voltage gain auto logic self.voltage_gain = 1 else: self.voltage_gain = 0.5