# -*- coding: utf-8 -*- """ created on January 6, 2020. Update March 2022 Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by Rémi CLEMENT (INRAE),Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR) Olivier KAUFMANN (UMONS) and Guillaume BLANCHY (ILVO). """ import os import io import json import numpy as np import csv import time from datetime import datetime from termcolor import colored import threading from logging_setup import setup_loggers import minimalmodbus # for programmable power supply # from mqtt_setup import mqtt_client_setup # finish import (done only when class is instantiated as some libs are only available on arm64 platform) try: import board # noqa import busio # noqa import adafruit_tca9548a # noqa import adafruit_ads1x15.ads1115 as ads # noqa from adafruit_ads1x15.analog_in import AnalogIn # noqa from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa from adafruit_mcp230xx.mcp23017 import MCP23017 # noqa import digitalio # noqa from digitalio import Direction # noqa from gpiozero import CPUTemperature # noqa arm64_imports = True except ImportError as error: print(colored(f'Import error: {error}', 'yellow')) arm64_imports = False except Exception as error: print(colored(f'Unexpected error: {error}', 'red')) exit() class OhmPi(object): """Create the main OhmPi object. Parameters ---------- config : str, optional Path to the .json configuration file. sequence : str, optional Path to the .txt where the sequence is read. By default, a 1 quadrupole sequence: 1, 2, 3, 4 is used. """ def __init__(self, config=None, sequence=None, mqtt=False, on_pi=None, idps=False): # flags and attributes if on_pi is None: _, on_pi = OhmPi.get_platform() self.sequence = sequence self.on_pi = on_pi # True if run from the RaspberryPi with the hardware, otherwise False for random data self.status = 'idle' # either running or idle self.run = False # flag is True when measuring self.thread = None # contains the handle for the thread taking the measurement self.path = 'data/' # where to save the .csv # set loggers config_exec_logger, _, config_data_logger, _, _ = setup_loggers(mqtt=mqtt) # TODO: add SOH self.data_logger = config_data_logger self.exec_logger = config_exec_logger self.soh_logger = None print('Loggers:') print(colored(f'Exec logger {self.exec_logger.handlers if self.exec_logger is not None else "None"}', 'blue')) print(colored(f'Data logger {self.data_logger.handlers if self.data_logger is not None else "None"}', 'blue')) print(colored(f'SOH logger {self.soh_logger.handlers if self.soh_logger is not None else "None"}', 'blue')) # read in hardware parameters (settings.py) self._read_hardware_parameters() # default acquisition parameters self.pardict = { 'injection_duration': 0.2, 'nbr_meas': 100, 'sequence_delay': 1, 'nb_stack': 1, 'export_path': 'data/measurement.csv' } # read in acquisition parameters if config is not None: self._read_acquisition_parameters(config) self.exec_logger.debug('Initialized with configuration:' + str(self.pardict)) # read quadrupole sequence if sequence is None: self.sequence = np.array([[1, 2, 3, 4]]) else: self.read_quad(sequence) self.idps = idps # flag to use dps for injection or not # connect to components on the OhmPi board if self.on_pi: # activation of I2C protocol self.i2c = busio.I2C(board.SCL, board.SDA) # noqa # I2C connexion to MCP23008, for current injection self.mcp = MCP23008(self.i2c, address=0x20) # ADS1115 for current measurement (AB) self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x49) # ADS1115 for voltage measurement (MN) self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x48) # current injection module if self.idps: self.DPS = minimalmodbus.Instrument(port='/dev/ttyUSB0', slaveaddress=1) # port name, slave address (in decimal) self.DPS.serial.baudrate = 9600 # Baud rate 9600 as listed in doc self.DPS.serial.bytesize = 8 # self.DPS.serial.timeout = 1 # greater than 0.5 for it to work self.DPS.debug = False # self.DPS.serial.parity = 'N' # No parity self.DPS.mode = minimalmodbus.MODE_RTU # RTU mode self.DPS.write_register(0x0001, 40, 0) # max current allowed (36 mA for relays) # (last number) 0 is for mA, 3 is for A # injection courant and measure (TODO check if it works, otherwise back in run_measurement()) self.pin0 = self.mcp.get_pin(0) self.pin0.direction = Direction.OUTPUT self.pin0.value = False self.pin1 = self.mcp.get_pin(1) self.pin1.direction = Direction.OUTPUT self.pin1.value = False def _read_acquisition_parameters(self, config): """Read acquisition parameters. Parameters can be: - nb_electrodes (number of electrode used, if 4, no MUX needed) - injection_duration (in seconds) - nbr_meas (total number of times the sequence will be run) - sequence_delay (delay in second between each sequence run) - nb_stack (number of stack for each quadrupole measurement) - export_path (path where to export the data, timestamp will be added to filename) Parameters ---------- config : str Path to the .json or dictionary. """ if isinstance(config, dict): self.pardict.update(config) else: with open(config) as json_file: dic = json.load(json_file) self.pardict.update(dic) self.exec_logger.debug('Acquisition parameters updated: ' + str(self.pardict)) def _read_hardware_parameters(self): """Read hardware parameters from config.py """ from config import OHMPI_CONFIG self.id = OHMPI_CONFIG['id'] # ID of the OhmPi self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm self.Imax = OHMPI_CONFIG['Imax'] # maximum current self.exec_logger.warning(f'The maximum current cannot be higher than {self.Imax} mA') self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V self.coef_p3 = OHMPI_CONFIG['coef_p3'] # slope for current conversion for ads.P3, measurement in V/V # self.offset_p2 = OHMPI_CONFIG['offset_p2'] parameter removed # self.offset_p3 = OHMPI_CONFIG['offset_p3'] parameter removed self.nb_samples = OHMPI_CONFIG['integer'] # number of samples measured for each stack self.version = OHMPI_CONFIG['version'] # hardware version self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes self.board_address = OHMPI_CONFIG['board_address'] self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}') @staticmethod def find_identical_in_line(quads): """Find quadrupole which where A and B are identical. If A and B are connected to the same relay, the Pi burns (short-circuit). Parameters ---------- quads : numpy.ndarray List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad. Returns ------- output : 1D array of int List of index of rows where A and B are identical. """ # TODO is this needed for M and N? # if we have a 1D array (so only 1 quadrupole), make it 2D if len(quads.shape) == 1: quads = quads[None, :] output = np.where(quads[:, 0] == quads[:, 1])[0] # output = [] # if array_object.ndim == 1: # temp = np.zeros(4) # for i in range(len(array_object)): # temp[i] = np.count_nonzero(array_object == array_object[i]) # if any(temp > 1): # output.append(0) # else: # for i in range(len(array_object[:,1])): # temp = np.zeros(len(array_object[1,:])) # for j in range(len(array_object[1,:])): # temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j]) # if any(temp > 1): # output.append(i) return output @staticmethod def get_platform(): """Get platform name and check if it is a raspberry pi Returns ======= str, bool name of the platform on which the code is running, boolean that is true if the platform is a raspberry pi""" platform = 'unknown' on_pi = False try: with io.open('/sys/firmware/devicetree/base/model', 'r') as f: platform = f.read().lower() if 'raspberry pi' in platform: on_pi = True except FileNotFoundError: pass return platform, on_pi def read_quad(self, filename): """Read quadrupole sequence from file. Parameters ---------- filename : str Path of the .csv or .txt file with A, B, M and N electrodes. Electrode index start at 1. Returns ------- output : numpy.ndarray Array of shape (number quadrupoles * 4). """ output = np.loadtxt(filename, delimiter=" ", dtype=int) # load quadrupole file # locate lines where the electrode index exceeds the maximum number of electrodes test_index_elec = np.array(np.where(output > self.max_elec)) # locate lines where electrode A == electrode B test_same_elec = self.find_identical_in_line(output) # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2) if test_index_elec.size != 0: for i in range(len(test_index_elec[0, :])): self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} ' f'exceeds the maximum number of electrodes') # sys.exit(1) output = None elif len(test_same_elec) != 0: for i in range(len(test_same_elec)): self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}') # sys.exit(1) output = None if output is not None: self.exec_logger.debug('Sequence of {:d} quadrupoles read.'.format(output.shape[0])) self.sequence = output def switch_mux(self, electrode_nr, state, role): """Select the right channel for the multiplexer cascade for a given electrode. Parameters ---------- electrode_nr : int Electrode index to be switched on or off. state : str Either 'on' or 'off'. role : str Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board. """ if self.sequence.max() <= 4: # only 4 electrodes so no MUX pass else: # choose with MUX board tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role]) # find I2C address of the electrode and corresponding relay # TODO from number of electrode, the below can be guessed # considering that one MCP23017 can cover 16 electrodes electrode_nr = electrode_nr - 1 # switch to 0 indexing i2c_address = 7 - electrode_nr // 16 # quotient without rest of the division relay_nr = electrode_nr - (electrode_nr // 16) * 16 relay_nr = relay_nr + 1 # switch back to 1 based indexing # if electrode_nr < 17: # i2c_address = 7 # relay_nr = electrode_nr # elif 16 < electrode_nr < 33: # i2c_address = 6 # relay_nr = electrode_nr - 16 # elif 32 < electrode_nr < 49: # i2c_address = 5 # relay_nr = electrode_nr - 32 # elif 48 < electrode_nr < 65: # i2c_address = 4 # relay_nr = electrode_nr - 48 if i2c_address is not None: # select the MCP23017 of the selected MUX board mcp2 = MCP23017(tca[i2c_address]) mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT if state == 'on': mcp2.get_pin(relay_nr - 1).value = True else: mcp2.get_pin(relay_nr - 1).value = False self.exec_logger.debug(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}') else: self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}') def switch_mux_on(self, quadrupole): """ Switch on multiplexer relays for given quadrupole. Parameters ---------- quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ roles = ['A', 'B', 'M', 'N'] # another check to be sure A != B if quadrupole[0] != quadrupole[1]: for i in range(0, 4): self.switch_mux(quadrupole[i], 'on', roles[i]) else: self.exec_logger.error('A == B -> short circuit risk detected!') def switch_mux_off(self, quadrupole): """ Switch off multiplexer relays for given quadrupole. Parameters ---------- quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ roles = ['A', 'B', 'M', 'N'] for i in range(0, 4): self.switch_mux(quadrupole[i], 'off', roles[i]) def reset_mux(self): """Switch off all multiplexer relays.""" roles = ['A', 'B', 'M', 'N'] for i in range(0, 4): for j in range(1, self.max_elec + 1): self.switch_mux(j, 'off', roles[i]) self.exec_logger.debug('All MUX switched off.') def gain_auto(self, channel): """ Automatically set the gain on a channel Parameters ---------- channel: Returns ------- float """ gain = 2 / 3 if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023): gain = 2 elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508): gain = 4 elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250): gain = 8 elif abs(channel.voltage) < 0.256: gain = 16 self.exec_logger.debug(f'Setting gain to {gain}') return gain def compute_tx_volt(self, best_tx_injtime=1): """Compute best voltage to inject to be in our range of Vmn (10 mV - 4500 mV) and current (2 - 45 mA) """ # inferring best voltage for injection Vab # we guess the polarity on Vmn by trying both cases. once found # we inject a starting voltage of 5V and measure our Vmn. Based # on the data we then compute a multiplifcation factor to inject # a voltage that will fall right in the measurable range of Vmn # (10 - 4500 mV) and current (45 mA max) # select a polarity to start with self.pin0.value = True self.pin1.value = False self.DPS.write_register(0x09, 1) # DPS5005 on tau = np.nan # voltage optimization for volt in range(2, 10, 2): print('trying with v:', volt) self.DPS.write_register(0x0000,volt,2) # fixe la voltage pour la mesure à 5V time.sleep(best_tx_injtime) # inject for 1 s at least on DPS5005 # autogain self.ads_current = ads.ADS1115(self.i2c, gain=2/3, data_rate=128, address=0x49) self.ads_voltage = ads.ADS1115(self.i2c, gain=2/3, data_rate=128, address=0x48) print('current P0', AnalogIn(self.ads_current, ads.P0).voltage) print('voltage P0', AnalogIn(self.ads_voltage, ads.P0).voltage) print('voltage P2', AnalogIn(self.ads_voltage, ads.P2).voltage) gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0)) gain_voltage0 = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0)) gain_voltage2 = self.gain_auto(AnalogIn(self.ads_voltage, ads.P2)) gain_voltage = np.min([gain_voltage0, gain_voltage2]) print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage)) self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=128, address=0x49) self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=128, address=0x48) # we measure the voltage on both A0 and A2 to guess the polarity I = (AnalogIn(self.ads_current, ads.P0).voltage) * 1000/50/2 # measure current U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000 # measure voltage U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000 print('I (mV)', I*50*2) print('I (mA)', I) print('U0 (mV)', U0) print('U2 (mV)', U2) # check polarity polarity = 1 # by default, we guessed it right if U0 < 0: # we guessed it wrong, let's use a correction factor polarity = -1 print('polarity', polarity) # TODO (edge case) if PS is negative and greater than Vmn, it can # potentially cause two negative values so none above 0 # check if we can actually measure smth ok = True if I > 2 and I <= 45: if (((U0 < 4500) and (polarity > 0)) or ((2 < 4500) and (polarity < 0))): if (((U0 > 10) and (polarity > 0)) or ((U2 > 10) and (polarity < 0))): # ok, we compute tau # inferring polarity and computing best voltage to inject # by hardware design we can measure 10-4500 mV and 2-45 mA # we will decide on the Vab to fall within this range if U0 > 0: # we guessed the polarity right, let's keep that tauI = 45 / I # compute ratio to maximize measuring range of I tauU = 4500 / U0 # compute ratio to maximize measuring range of U elif U0 < 0: # we guessed it wrong, let's use a correction factor tauI = 45 / I tauU = 4500 / U2 # let's be careful and avoid saturation by taking only 90% of # the smallest factor if tauI < tauU: tau = tauI * 0.9 elif tauI > tauU: tau = tauU * 0.9 print('tauI', tauI) print('tauU', tauU) print('best tau is', tau) break else: # too weak, but let's try with a higher voltage pass # we'll come back to the loop with higher voltage else: print('voltage out of range, max 4500 mV') # doesn't work, tau will be NaN break else: if I <= 2: # let's try again pass else: print('current out of range, max 45 mA') # doesn't work, tau will be NaN break if tau == np.nan: print('voltage out of range') self.DPS.write_register(0x09, 0) # DPS5005 off # we keep DPS5005 on if we computed a tau successfully # turn off Vab self.pin0.value = False self.pin1.value = False return tau*volt, polarity def run_measurement(self, quad=[1, 2, 3, 4], nb_stack=None, injection_duration=None, best_tx=True, tx_volt=0, autogain=True, best_tx_injtime=1): """Do a 4 electrode measurement and measure transfer resistance obtained. Parameters ---------- quad : list of int Quadrupole to measure. nb_stack : int, optional Number of stacks. A stacl is considered two half-cycles (one positive, one negative). injection_duration : int, optional Injection time in seconds. best_tx : bool, optional If True, will attempt to find the best Tx voltage that fill within our measurement range. If it cannot find it, it will return NaN as measurement. If False, it will make the measurement with whatever it has as voltage and never returns NaN. Finding the best tx voltage can take some time before each quadrupole. tx_volt : float, optional If specified, voltage will be imposed disregarding the value of best_tx argument. autogain : bool, optional If True, will adapt the gain of the ADS1115 to maximize the resolution of the reading. """ # check arguments if nb_stack is None: nb_stack = self.pardict['nb_stack'] if injection_duration is None: injection_duration = self.pardict['injection_duration'] # inner variable initialization sum_i = 0 sum_vmn = 0 sum_ps = 0 self.exec_logger.debug('Starting measurement') self.exec_logger.info('Waiting for data') # get best voltage to inject if self.idps and tx_volt == 0: tx_volt, polarity = self.compute_tx_volt(best_tx_injtime=best_tx_injtime) print('tx volt V:', tx_volt) else: polarity = 1 # first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous) self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x49, mode=0) self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x48, mode=0) # turn on the power supply oor = False if self.idps: if tx_volt != np.nan: self.DPS.write_register(0x0000, tx_volt, 2) # set tx voltage in V self.DPS.write_register(0x09, 1) # DPS5005 on else: print('no best voltage found, will not take measurement') oor = True if oor == False: if autogain: # compute autogain self.pin0.value = True self.pin1.value = False time.sleep(injection_duration) gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0)) if polarity > 0: gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0)) else: gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P2)) self.pin0.value = False self.pin1.value = False print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage)) self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x49, mode=0) self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x48, mode=0) # one stack = 2 half-cycles (one positive, one negative) pinMN = 0 if polarity > 0 else 2 # sampling for each stack at the end of the injection sampling_interval = 10 # ms self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1 # full data for waveform #fulldata = np.zeros((nb_stack * self.nb_samples, 3)) * np.nan fulldata = [] # start counter # we sample every 10 ms (as using AnalogIn for both current # and voltage takes about 7 ms). When we go over the injection # duration, we break the loop and truncate the meas arrays # only the last values in meas will be taken into account start_time = time.time() for n in range(0, nb_stack * 2): # for each half-cycles # current injection if (n % 2) == 0: self.pin0.value = True self.pin1.value = False else: self.pin0.value = False self.pin1.value = True # current injection nr2 # measurement of current i and voltage u during injection meas = np.zeros((self.nb_samples, 3)) * np.nan start_delay = time.time() # stating measurement time dt = 0 for k in range(0, self.nb_samples): # reading current value on ADS channels meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt) if pinMN == 0: meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000 else: meas[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000 *-1 time.sleep(sampling_interval / 1000) dt = time.time() - start_delay # real injection time (s) meas[k, 2] = time.time() - start_time if dt > (injection_duration - 0 * sampling_interval /1000): break # stop current injection self.pin0.value = False self.pin1.value = False end_delay = time.time() # truncate the meas array if we didn't fill the last samples meas = meas[:k+1] # measurement of current i and voltage u during off time measpp = np.zeros((meas.shape[0], 3)) * np.nan start_delay = time.time() # stating measurement time dt = 0 for k in range(0, measpp.shape[0]): # reading current value on ADS channels measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt) if pinMN == 0: measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000 else: measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000 *-1 time.sleep(sampling_interval / 1000) dt = time.time() - start_delay # real injection time (s) measpp[k, 2] = time.time() - start_time if dt > (injection_duration - 0 * sampling_interval /1000): break end_delay = time.time() # truncate the meas array if we didn't fill the last samples measpp = measpp[:k+1] # we alternate on which ADS1115 pin we measure because of sign of voltage if pinMN == 0: pinMN = 2 else: pinMN = 0 # store data for full wave form fulldata.append(meas) fulldata.append(measpp) # wait once the actual injection time between two injection # so it's a 50% duty cycle #print('crenaux (s)', (end_delay - start_delay)) #print('sleep for (s)', injection_duration - (end_delay - start_delay)) #print(meas) #print(measpp) # TODO get battery voltage and warn if battery is running low # TODO send a message on SOH stating the battery level # let's do some calculation (out of the stacking loop) for n, meas in enumerate(fulldata[::2]): # take average from the samples per stack, then sum them all # average for the last third of the stacked values # is done outside the loop sum_i = sum_i + (np.mean(meas[-int(meas.shape[0]//3):, 0])) vmn1 = np.mean(meas[-int(meas.shape[0]//3), 1]) if (n % 2) == 0: sum_vmn = sum_vmn - vmn1 sum_ps = sum_ps + vmn1 else: sum_vmn = sum_vmn + vmn1 sum_ps = sum_ps + vmn1 if self.idps: self.DPS.write_register(0x0000, 0, 2) # reset to 0 volt self.DPS.write_register(0x09, 0) # DPS5005 off else: sum_i = np.nan sum_vmn = np.nan sum_ps = np.nan # create a dictionary and compute averaged values from all stacks d = { "time": datetime.now().isoformat(), "A": quad[0], "B": quad[1], "M": quad[2], "N": quad[3], "inj time [ms]": (end_delay - start_delay) * 1000, "Vmn [mV]": sum_vmn / (2 * nb_stack), "I [mA]": sum_i / (2 * nb_stack), "R [ohm]": sum_vmn / sum_i, "Ps [mV]": sum_ps / (2 * nb_stack), "nbStack": nb_stack, "CPU temp [degC]": CPUTemperature().temperature, "Time [s]": (time.time() - start_time), "Nb samples [-]": self.nb_samples, "fulldata": np.vstack(fulldata) } print(d) # round number to two decimal for nicer string output output = [f'{k}\t' for k in d.keys()] output = str(output)[:-1] + '\n' for k in d.keys(): if isinstance(d[k], float): val = np.round(d[k], 2) else: val = d[k] output += f'{val}\t' output = output[:-1] self.exec_logger.debug(output) return d def rs_check(self): """ Check contact resistance. """ # create custom sequence where MN == AB # we only check the electrodes which are in the sequence (not all might be connected) elec = np.sort(np.unique(self.sequence.flatten())) # assumed order quads = np.vstack([ elec[:-1], elec[1:], elec[:-1], elec[1:], ]).T # create filename to store RS export_path_rs = self.pardict['export_path'].replace('.csv', '') \ + '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv' # perform RS check self.run = True self.status = 'running' # make sure all mux are off to start with self.reset_mux() # measure all quad of the RS sequence for i in range(0, quads.shape[0]): quad = quads[i, :] # quadrupole self.switch_mux_on(quad) # put before raising the pins (otherwise conflict i2c) d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=0.5, tx_volt=5, autogain=True) resistance = d['R [ohm]'] voltage = d['Vmn [mV]'] current = d['I [mA]'] print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} Ohm'.format( current, voltage, resistance)) # compute resistance measured (= contact resistance) resist = abs(resistance / 1000) msg = 'Contact resistance {:s}: {:.3f} kOhm'.format( str(quad), resist) #print(msg) self.exec_logger.debug(msg) # if contact resistance = 0 -> we have a short circuit!! if resist < 1e-5: msg = '!!!SHORT CIRCUIT!!! {:s}: {:.3f} kOhm'.format( str(quad), resist) self.exec_logger.warning(msg) print(msg) # save data and print in a text file self.append_and_save(export_path_rs, { 'A': quad[0], 'B': quad[1], 'RS [kOhm]': resist, }) # close mux path and put pin back to GND self.switch_mux_off(quad) #self.pin0.value = False #self.pin1.value = False self.reset_mux() self.status = 'idle' self.run = False # # # TODO if interrupted, we would need to restore the values # # TODO or we offer the possiblity in 'run_measurement' to have rs_check each time? @staticmethod def append_and_save(filename, last_measurement): """Append and save last measurement dataframe. Parameters ---------- filename : str filename to save the last measurement dataframe last_measurement : dict Last measurement taken in the form of a python dictionary """ if os.path.isfile(filename): # Load data file and append data to it with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writerow(last_measurement) # last_measurement.to_csv(f, header=False) else: # create data file and add headers with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writeheader() w.writerow(last_measurement) # last_measurement.to_csv(f, header=True) def measure(self): """Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'. """ self.run = True self.status = 'running' self.exec_logger.debug(f'Status: {self.status}') def func(): for g in range(0, self.pardict["nbr_meas"]): # for time-lapse monitoring if self.run is False: self.exec_logger.warning('Data acquisition interrupted') break t0 = time.time() # create filename with timestamp filename = self.pardict["export_path"].replace('.csv', f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv') self.exec_logger.debug(f'Saving to {filename}') # make sure all multiplexer are off self.reset_mux() # measure all quadrupole of the sequence for i in range(0, self.sequence.shape[0]): quad = self.sequence[i, :] # quadrupole if self.run is False: break # call the switch_mux function to switch to the right electrodes self.switch_mux_on(quad) # run a measurement if self.on_pi: current_measurement = self.run_measurement(quad, self.pardict["nb_stack"], self.pardict["injection_duration"]) else: # for testing, generate random data current_measurement = { 'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]], 'R [ohm]': np.abs(np.random.randn(1)) } # switch mux off self.switch_mux_off(quad) # log data to the data logger self.data_logger.info(f'{current_measurement}') # save data and print in a text file self.append_and_save(filename, current_measurement) self.exec_logger.debug('{:d}/{:d}'.format(i + 1, self.sequence.shape[0])) # compute time needed to take measurement and subtract it from interval # between two sequence run (= sequence_delay) measuring_time = time.time() - t0 sleep_time = self.pardict["sequence_delay"] - measuring_time if sleep_time < 0: # it means that the measuring time took longer than the sequence delay sleep_time = 0 self.exec_logger.warning('The measuring time is longer than the sequence delay. ' 'Increase the sequence delay') # sleeping time between sequence if self.pardict["nbr_meas"] > 1: time.sleep(sleep_time) # waiting for next measurement (time-lapse) self.status = 'idle' self.thread = threading.Thread(target=func) self.thread.start() def stop(self): """Stop the acquisition. """ self.run = False if self.thread is not None: self.thread.join() self.exec_logger.debug(f'Status: {self.status}') VERSION = '2.1.0' print(colored(r' ________________________________' + '\n' + r'| _ | | | || \/ || ___ \_ _|' + '\n' + r'| | | | |_| || . . || |_/ / | |' + '\n' + r'| | | | _ || |\/| || __/ | |' + '\n' + r'\ \_/ / | | || | | || | _| |_' + '\n' + r' \___/\_| |_/\_| |_/\_| \___/ ', 'red')) print('OhmPi start') print('Version:', VERSION) platform, on_pi = OhmPi.get_platform() if on_pi: print(colored(f'Running on {platform} platform', 'green')) # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...) # and emit a warning otherwise if not arm64_imports: print(colored(f'Warning: Required packages are missing.\n' f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow')) else: print(colored(f'Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow')) current_time = datetime.now() print(current_time.strftime("%Y-%m-%d %H:%M:%S")) # for testing if __name__ == "__main__": ohmpi = OhmPi(config='ohmpi_param.json') ohmpi.run_measurement() #ohmpi.measure() #ohmpi.read_quad('breadboard.txt') #ohmpi.measure() #time.sleep(20) #ohmpi.stop()