# -*- coding: utf-8 -*-
"""
created on January 6, 2020.
Update May 2022
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE),Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS) and Guillaume BLANCHY (ILVO).
"""

import os
import io
import json
# import subprocess

import numpy as np
import csv
import time
import zmq
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
from config import CONTROL_CONFIG

# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
    import board  # noqa
    import busio  # noqa
    import adafruit_tca9548a  # noqa
    import adafruit_ads1x15.ads1115 as ads  # noqa
    from adafruit_ads1x15.analog_in import AnalogIn  # noqa
    from adafruit_mcp230xx.mcp23008 import MCP23008  # noqa
    from adafruit_mcp230xx.mcp23017 import MCP23017  # noqa
    import digitalio  # noqa
    from digitalio import Direction  # noqa
    from gpiozero import CPUTemperature  # noqa

    arm64_imports = True
except ImportError as error:
    print(colored(f'Import error: {error}', 'yellow'))
    arm64_imports = False
except Exception as error:
    print(colored(f'Unexpected error: {error}', 'red'))
    exit()


class OhmPi(object):
    """Create the main OhmPi object.

    Parameters
    ----------
    settings : str, optional
        Path to the .json configuration file.
    sequence : str, optional
        Path to the .txt where the sequence is read. By default, a 1 quadrupole
        sequence: 1, 2, 3, 4 is used.
    """

    def __init__(self, settings=None, sequence=None, mqtt=True, on_pi=None):
        # flags and attributes
        if on_pi is None:
            _, on_pi = OhmPi.get_platform()
        self.sequence = sequence
        self.on_pi = on_pi  # True if run from the RaspberryPi with the hardware, otherwise False for random data
        self.status = 'idle'  # either running or idle
        self.run = False  # flag is True when measuring
        self.thread = None  # contains the handle for the thread taking the measurement
        # self.path = 'data/'  # where to save the .csv

        # set loggers
        config_exec_logger, _, config_data_logger, _, _ = setup_loggers(mqtt=mqtt)  # TODO: add SOH
        self.data_logger = config_data_logger
        self.exec_logger = config_exec_logger
        self.soh_logger = None
        print('Loggers:')
        print(colored(f'Exec logger {self.exec_logger.handlers if self.exec_logger is not None else "None"}', 'blue'))
        print(colored(f'Data logger {self.data_logger.handlers if self.data_logger is not None else "None"}', 'blue'))
        print(colored(f'SOH logger {self.soh_logger.handlers if self.soh_logger is not None else "None"}', 'blue'))

        # read in hardware parameters (config.py)
        self._read_hardware_config()

        # default acquisition settings
        self.settings = {
            'injection_duration': 0.2,
            'nbr_meas': 1,
            'sequence_delay': 1,
            'nb_stack': 1,
            'export_path': 'data/measurement.csv'
        }
        print(self.settings)
        # read in acquisition settings
        if settings is not None:
            self._update_acquisition_settings(settings)

        print(self.settings)
        self.exec_logger.debug('Initialized with settings:' + str(self.settings))

        # read quadrupole sequence
        if sequence is None:
            self.sequence = np.array([[1, 2, 3, 4]], dtype=np.int32)
        else:
            self.read_quad(sequence)

        # connect to components on the OhmPi board
        if self.on_pi:
            # activation of I2C protocol
            self.i2c = busio.I2C(board.SCL, board.SDA)  # noqa

            # I2C connexion to MCP23008, for current injection
            self.mcp = MCP23008(self.i2c, address=0x20)

            # ADS1115 for current measurement (AB)
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)

            # ADS1115 for voltage measurement (MN)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)

        # Starts the command processing thread
        #self.cmd_thread.start()
        self.process_commands()

    def _update_acquisition_settings(self, config):
        """Update acquisition settings from a json file or dictionary.
        Parameters can be:
            - nb_electrodes (number of electrode used, if 4, no MUX needed)
            - injection_duration (in seconds)
            - nbr_meas (total number of times the sequence will be run)
            - sequence_delay (delay in second between each sequence run)
            - nb_stack (number of stack for each quadrupole measurement)
            - export_path (path where to export the data, timestamp will be added to filename)

        Parameters
        ----------
        config : str
            Path to the .json or dictionary.
        """
        if isinstance(config, dict):
            self.settings.update(config)
        else:
            with open(config) as json_file:
                dic = json.load(json_file)
            self.settings.update(dic)
        self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings))

    def _read_hardware_config(self):
        """Read hardware configuration from config.py
        """
        from config import OHMPI_CONFIG
        self.id = OHMPI_CONFIG['id']  # ID of the OhmPi
        self.r_shunt = OHMPI_CONFIG['R_shunt']  # reference resistance value in ohm
        self.Imax = OHMPI_CONFIG['Imax']  # maximum current
        self.exec_logger.warning(f'The maximum current cannot be higher than {self.Imax} mA')
        self.coef_p2 = OHMPI_CONFIG['coef_p2']  # slope for current conversion for ads.P2, measurement in V/V
        self.coef_p3 = OHMPI_CONFIG['coef_p3']  # slope for current conversion for ads.P3, measurement in V/V
        # self.offset_p2 = OHMPI_CONFIG['offset_p2'] parameter removed
        # self.offset_p3 = OHMPI_CONFIG['offset_p3'] parameter removed
        self.nb_samples = OHMPI_CONFIG['integer']  # number of samples measured for each stack
        self.version = OHMPI_CONFIG['version']  # hardware version
        self.max_elec = OHMPI_CONFIG['max_elec']  # maximum number of electrodes
        self.board_address = OHMPI_CONFIG['board_address']
        self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')

    @staticmethod
    def find_identical_in_line(quads):
        """Find quadrupole where A and B are identical.
        If A and B are connected to the same relay, the Pi burns (short-circuit).
        
        Parameters
        ----------
        quads : numpy.ndarray
            List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
        
        Returns
        -------
        output : numpy.ndarray 1D array of int
            List of index of rows where A and B are identical.
        """
        # TODO is this needed for M and N?

        # if we have a 1D array (so only 1 quadrupole), make it 2D
        if len(quads.shape) == 1:
            quads = quads[None, :]

        output = np.where(quads[:, 0] == quads[:, 1])[0]

        # output = []
        # if array_object.ndim == 1:
        #     temp = np.zeros(4)
        #     for i in range(len(array_object)):
        #         temp[i] = np.count_nonzero(array_object == array_object[i])
        #     if any(temp > 1):
        #         output.append(0)
        # else:
        #     for i in range(len(array_object[:,1])):
        #         temp = np.zeros(len(array_object[1,:]))
        #         for j in range(len(array_object[1,:])):
        #             temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j])
        #         if any(temp > 1):
        #             output.append(i)
        return output

    @staticmethod
    def get_platform():
        """Get platform name and check if it is a raspberry pi
        Returns
        =======
        str, bool
            name of the platform on which the code is running, boolean that is true if the platform is a raspberry pi"""

        platform = 'unknown'
        on_pi = False
        try:
            with io.open('/sys/firmware/devicetree/base/model', 'r') as f:
                platform = f.read().lower()
            if 'raspberry pi' in platform:
                on_pi = True
        except FileNotFoundError:
            pass
        return platform, on_pi

    def read_quad(self, filename):
        """Read quadrupole sequence from file.

        Parameters
        ----------
        filename : str
            Path of the .csv or .txt file with A, B, M and N electrodes.
            Electrode index start at 1.

        Returns
        -------
        sequence : numpy.array
            Array of shape (number quadrupoles * 4).
        """
        sequence = np.loadtxt(filename, delimiter=" ", dtype=np.int32)  # load quadrupole file

        if sequence is not None:
            self.exec_logger.debug('Sequence of {:d} quadrupoles read.'.format(sequence.shape[0]))

        # locate lines where the electrode index exceeds the maximum number of electrodes
        test_index_elec = np.array(np.where(sequence > self.max_elec))

        # locate lines where electrode A == electrode B
        test_same_elec = self.find_identical_in_line(sequence)

        # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
        if test_index_elec.size != 0:
            for i in range(len(test_index_elec[0, :])):
                self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
                                       f'exceeds the maximum number of electrodes')
            # sys.exit(1)
            sequence = None
        elif len(test_same_elec) != 0:
            for i in range(len(test_same_elec)):
                self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
            # sys.exit(1)
            sequence = None

        if sequence is not None:
            self.exec_logger.info('Sequence of {:d} quadrupoles read.'.format(sequence.shape[0]))

        self.sequence = sequence

    def switch_mux(self, electrode_nr, state, role):
        """Select the right channel for the multiplexer cascade for a given electrode.
        
        Parameters
        ----------
        electrode_nr : int
            Electrode index to be switched on or off.
        state : str
            Either 'on' or 'off'.
        role : str
            Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
        """
        if self.sequence.max() <= 4:  # only 4 electrodes so no MUX
            pass
        else:
            # choose with MUX board
            tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role])

            # find I2C address of the electrode and corresponding relay
            # TODO from number of electrode, the below can be guessed
            # considering that one MCP23017 can cover 16 electrodes
            electrode_nr = electrode_nr - 1  # switch to 0 indexing
            i2c_address = 7 - electrode_nr // 16  # quotient without rest of the division
            relay_nr = electrode_nr - (electrode_nr // 16) * 16
            relay_nr = relay_nr + 1  # switch back to 1 based indexing

            # if electrode_nr < 17:
            #     i2c_address = 7
            #     relay_nr = electrode_nr
            # elif 16 < electrode_nr < 33:
            #     i2c_address = 6
            #     relay_nr = electrode_nr - 16
            # elif 32 < electrode_nr < 49:
            #     i2c_address = 5
            #     relay_nr = electrode_nr - 32
            # elif 48 < electrode_nr < 65:
            #     i2c_address = 4
            #     relay_nr = electrode_nr - 48

            if i2c_address is not None:
                # select the MCP23017 of the selected MUX board
                mcp2 = MCP23017(tca[i2c_address])
                mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT

                if state == 'on':
                    mcp2.get_pin(relay_nr - 1).value = True
                else:
                    mcp2.get_pin(relay_nr - 1).value = False

                self.exec_logger.debug(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}')
            else:
                self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}')

    def switch_mux_on(self, quadrupole):
        """ Switch on multiplexer relays for given quadrupole.
        
        Parameters
        ----------
        quadrupole : list of 4 int
            List of 4 integers representing the electrode numbers.
        """
        roles = ['A', 'B', 'M', 'N']
        # another check to be sure A != B
        if quadrupole[0] != quadrupole[1]:
            for i in range(0, 4):
                self.switch_mux(quadrupole[i], 'on', roles[i])
        else:
            self.exec_logger.error('A == B -> short circuit risk detected!')

    def switch_mux_off(self, quadrupole):
        """ Switch off multiplexer relays for given quadrupole.
        
        Parameters
        ----------
        quadrupole : list of 4 int
            List of 4 integers representing the electrode numbers.
        """
        roles = ['A', 'B', 'M', 'N']
        for i in range(0, 4):
            self.switch_mux(quadrupole[i], 'off', roles[i])

    def reset_mux(self):
        """Switch off all multiplexer relays."""
        roles = ['A', 'B', 'M', 'N']
        for i in range(0, 4):
            for j in range(1, self.max_elec + 1):
                self.switch_mux(j, 'off', roles[i])
        self.exec_logger.debug('All MUX switched off.')

    def gain_auto(self, channel):
        """ Automatically set the gain on a channel

        Parameters
        ----------
        channel:

        Returns
        -------
            float
        """
        gain = 2 / 3
        if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023):
            gain = 2
        elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508):
            gain = 4
        elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250):
            gain = 8
        elif abs(channel.voltage) < 0.256:
            gain = 16
        self.exec_logger.debug(f'Setting gain to {gain}')
        return gain

    def run_measurement(self, quad, nb_stack=None, injection_duration=None):
        """ Do a 4 electrode measurement and measure transfer resistance obtained.

        Parameters
        ----------
        quad : iterable (list of int)
            Quadrupole to measure.
        nb_stack : int, optional
            Number of stacks.
        injection_duration : int, optional
            Injection time in seconds.

        """
        # TODO here we can add the current_injected or voltage_injected in mA or mV
        # check arguments

        self.exec_logger.debug('Starting measurement')
        self.exec_logger.info('Waiting for data')

        if self.on_pi:
            if nb_stack is None:
                nb_stack = self.settings['nb_stack']
            if injection_duration is None:
                injection_duration = self.settings['injection_duration']

            start_time = time.time()

            # inner variable initialization
            injection_current = 0
            sum_vmn = 0
            sum_ps = 0

            # injection courant and measure
            pin0 = self.mcp.get_pin(0)
            pin0.direction = Direction.OUTPUT
            pin1 = self.mcp.get_pin(1)
            pin1.direction = Direction.OUTPUT
            pin0.value = False
            pin1.value = False

            # FUNCTION AUTOGAIN
            # ADS1115 for current measurement (AB)
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
            # ADS1115 for voltage measurement (MN)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
            # try auto gain
            pin1.value = True
            pin0.value = False
            time.sleep(injection_duration)
            gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0))
            gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0, ads.P1))
            pin0.value = False
            pin1.value = False
            print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage))
            self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x48)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x49)

            # TODO I don't get why 3 + 2*nb_stack - 1? why not just range(nb_stack)?
            # or do we consider 1 stack = one full polarity? do we discard the first 3 readings?
            for n in range(0, 3 + 2 * nb_stack - 1):
                # current injection
                if (n % 2) == 0:
                    pin1.value = True
                    pin0.value = False  # current injection polarity nr1
                else:
                    pin0.value = True
                    pin1.value = False  # current injection nr2
                start_delay = time.time()  # stating measurement time
                time.sleep(injection_duration)  # delay depending on current injection duration

                # measurement of current i and voltage u
                # sampling for each stack at the end of the injection
                meas = np.zeros((self.nb_samples, 3))
                for k in range(0, self.nb_samples):
                    # reading current value on ADS channel A0
                    meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)  # TODO: replace 50 by factor depending on INA model specifed in config.py
                    # reading voltage value on ADS channel A2
                    meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000  # NOTE: Changed sign

                # stop current injection
                pin1.value = False
                pin0.value = False
                end_delay = time.time()

                # take average from the samples per stack, then sum them all
                # average for all stack is done outside the loop
                injection_current = injection_current + (np.mean(meas[:, 0]))
                vmn1 = np.mean(meas[:, 1]) - np.mean(meas[:, 2])
                if (n % 2) == 0:
                    sum_vmn = sum_vmn - vmn1
                    sum_ps = sum_ps + vmn1
                else:
                    sum_vmn = sum_vmn + vmn1
                    sum_ps = sum_ps + vmn1

                # TODO get battery voltage and warn if battery is running low
                # TODO send a message on SOH stating the battery level
                end_calc = time.time()

                # TODO I am not sure I understand the computation below
                # wait twice the actual injection time between two injection
                # so it's a 50% duty cycle right?
                time.sleep(2 * (end_delay - start_delay) - (end_calc - start_delay))

            # create a dictionary and compute averaged values from all stacks
            d = {
                "time": datetime.now().isoformat(),
                "A": quad[0],
                "B": quad[1],
                "M": quad[2],
                "N": quad[3],
                "inj time [ms]": (end_delay - start_delay) * 1000,
                "Vmn [mV]": (sum_vmn / (3 + 2 * nb_stack - 1)),
                "I [mA]": (injection_current / (3 + 2 * nb_stack - 1)),
                "R [ohm]": (sum_vmn / (3 + 2 * nb_stack - 1) / (injection_current / (3 + 2 * nb_stack - 1))),
                "Ps [mV]": (sum_ps / (3 + 2 * nb_stack - 1)),
                "nbStack": nb_stack,
                "CPU temp [degC]": CPUTemperature().temperature,
                "Time [s]": (-start_time + time.time()),
                "Nb samples [-]": self.nb_samples
            }
        else:  # for testing, generate random data
            d = {'time': datetime.now().isoformat(), 'A': quad[0], 'B': quad[1], 'M': quad[2], 'N': quad[3],
                 'R [ohm]': np.abs(np.random.randn(1)).tolist()}

        # round number to two decimal for nicer string output
        output = [f'{k}\t' for k in d.keys()]
        output = str(output)[:-1] + '\n'
        for k in d.keys():
            if isinstance(d[k], float):
                val = np.round(d[k], 2)
            else:
                val = d[k]
                output += f'{val}\t'
        output = output[:-1]
        self.exec_logger.debug(output)
        dd = d.copy()
        dd.update({'A': str(dd['A'])})
        dd.update({'B': str(dd['B'])})
        dd.update({'M': str(dd['M'])})
        dd.update({'N': str(dd['N'])})
        print(np.dtype(d['A']))
        print(json.dumps(dd))
        self.data_logger.info(json.dumps(dd))
        time.sleep(1)  # NOTE: why this?

        return d

    def rs_check(self):
        """ Check contact resistance.
        """
        # create custom sequence where MN == AB
        # we only check the electrodes which are in the sequence (not all might be connected)
        elec = np.sort(np.unique(self.sequence.flatten()))  # assumed order
        quads = np.vstack([
            elec[:-1],
            elec[1:],
            elec[:-1],
            elec[1:],
        ]).T

        # create filename to store RS
        export_path_rs = self.settings['export_path'].replace('.csv', '') \
                         + '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'

        # perform RS check
        self.run = True
        self.status = 'running'

        # make sure all mux are off to start with
        self.reset_mux()

        # measure all quad of the RS sequence
        for i in range(0, quads.shape[0]):
            quad = quads[i, :]  # quadrupole

            # NOTE (GB): I'd use the self.run_measurement() for all this middle part so we an make use of autogain and so ...
            # call the switch_mux function to switch to the right electrodes
            # self.switch_mux_on(quad)

            # run a measurement
            # current_measurement = self.run_measurement(quad, 1, 0.25)

            # switch mux off
            # self.switch_mux_off(quad)

            self.switch_mux_on(quad)

            # current injection
            pin0 = self.mcp.get_pin(0)
            pin0.direction = Direction.OUTPUT
            pin1 = self.mcp.get_pin(1)
            pin1.direction = Direction.OUTPUT
            pin0.value = False
            pin1.value = False

            # call the switch_mux function to switch to the right electrodes
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
            # ADS1115 for voltage measurement (MN)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
            pin1.value = True  # inject from pin1 to pin0
            pin0.value = False
            time.sleep(0.2)

            # measure current and voltage
            current = AnalogIn(self.ads_current, ads.P0).voltage / (50 * self.r_shunt)
            voltage = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * 2.5
            # compute resistance measured (= contact resistance)
            resistance = np.abs(voltage / current)
            msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, V: {voltage * 1000.:>10.3f} mV, ' \
                  f'R: {resistance /1000.:>10.3f} kOhm'

            self.exec_logger.debug(msg)

            # if contact resistance = 0 -> we have a short circuit!!
            if resistance < 1e-2:
                msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resistance / 1000.:.3f} kOhm'
                self.exec_logger.warning(msg)

            # save data and print in a text file
            self.append_and_save(export_path_rs, {
                'A': quad[0],
                'B': quad[1],
                'RS [kOhm]': resistance / 1000.,
            })

            # close mux path and put pin back to GND
            self.switch_mux_off(quad)
            pin0.value = False
            pin1.value = False

        self.reset_mux()
        self.status = 'idle'
        self.run = False

    #
    #         # TODO if interrupted, we would need to restore the values
    #         # TODO or we offer the possibility in 'run_measurement' to have rs_check each time?

    @staticmethod
    def append_and_save(filename, last_measurement):
        """Append and save last measurement dataframe.

        Parameters
        ----------
        filename : str
            filename to save the last measurement dataframe
        last_measurement : dict
            Last measurement taken in the form of a python dictionary
        """

        if os.path.isfile(filename):
            # Load data file and append data to it
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writerow(last_measurement)
                # last_measurement.to_csv(f, header=False)
        else:
            # create data file and add headers
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writeheader()
                w.writerow(last_measurement)
                # last_measurement.to_csv(f, header=True)

    def process_commands(self):
        context = zmq.Context()
        tcp_port = CONTROL_CONFIG["tcp_port"]
        socket = context.socket(zmq.REP)
        socket.bind(f'tcp://*:{tcp_port}')

        print(colored(f'Listening to commands on tcp port {tcp_port}.'
                      f' Make sure your client interface is running and bound to this port...', 'blue'))
        self.exec_logger.debug(f'Start listening for commands on port {tcp_port}')
        while True:
            message = socket.recv()
            self.exec_logger.debug(f'Received command: {message}')
            e = None
            try:
                cmd_id = None
                decoded_message = json.loads(message.decode('utf-8'))
                cmd_id = decoded_message.pop('cmd_id', None)
                cmd = decoded_message.pop('cmd', None)
                args = decoded_message.pop('args', None)
                status = False
                e = None
                if cmd is not None and cmd_id is not None:
                    if cmd == 'update_settings' and args is not None:
                        self._update_acquisition_settings(args)
                    elif cmd == 'start':
                        self.measure(cmd_id)
                        while not self.status == 'idle':
                            time.sleep(0.1)
                        status = True
                    elif cmd == 'stop':
                        self.stop()
                        status = True
                    elif cmd == 'read_sequence':
                        try:
                            self.read_quad(args)
                            status = True
                        except Exception as e:
                            self.exec_logger.warning(f'Unable to read sequence: {e}')
                    elif cmd == 'set_sequence':
                        try:
                            self.sequence = np.array(args)
                            status = True
                        except Exception as e:
                            self.exec_logger.warning(f'Unable to set sequence: {e}')
                    elif cmd == 'rs_check':
                        try:
                            self.rs_check()
                            status = True
                        except Exception as e:
                            self.exec_logger.warning(f'Unable to run rs-check: {e}')
                    else:
                        self.exec_logger.warning(f'Unkown command {cmd} - cmd_id: {cmd_id}')
            except Exception as e:
                self.exec_logger.warning(f'Unable to decode command {message}: {e}')
                status = False
            finally:
                reply = {'cmd_id': cmd_id, 'status': status}
                reply = json.dumps(reply)
                self.exec_logger.debug(f'Execution report: {reply}')
                self.exec_logger.debug(reply)
                reply = bytes(reply, 'utf-8')
                socket.send(reply)
            #  Do some 'work'
            time.sleep(.1)

    def measure(self, cmd_id=None):
        """Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'.
        """
        self.run = True
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')

        def func():
            for g in range(0, self.settings["nbr_meas"]):  # for time-lapse monitoring
                if self.run is False:
                    self.exec_logger.warning('Data acquisition interrupted')
                    break
                t0 = time.time()

                # create filename with timestamp
                filename = self.settings["export_path"].replace('.csv',
                                                               f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
                self.exec_logger.debug(f'Saving to {filename}')

                # make sure all multiplexer are off
                self.reset_mux()

                # measure all quadrupole of the sequence
                for i in range(0, self.sequence.shape[0]):
                    quad = self.sequence[i, :]  # quadrupole
                    if self.run is False:
                        break

                    # call the switch_mux function to switch to the right electrodes
                    self.switch_mux_on(quad)

                    # run a measurement
                    acquired_data = self.run_measurement(quad, self.settings["nb_stack"],
                                                                   self.settings["injection_duration"])

                    # switch mux off
                    self.switch_mux_off(quad)

                    # add command_id in dataset
                    acquired_data.update({'cmd_id': cmd_id})
                    # log data to the data logger
                    self.data_logger.info(f'{acquired_data}')
                    print(f'{acquired_data}')
                    # save data and print in a text file
                    self.append_and_save(filename, acquired_data)
                    self.exec_logger.debug(f'{i+1:d}/{self.sequence.shape[0]:d}')

                # compute time needed to take measurement and subtract it from interval
                # between two sequence run (= sequence_delay)
                measuring_time = time.time() - t0
                sleep_time = self.settings["sequence_delay"] - measuring_time

                if sleep_time < 0:
                    # it means that the measuring time took longer than the sequence delay
                    sleep_time = 0
                    self.exec_logger.warning('The measuring time is longer than the sequence delay. '
                                             'Increase the sequence delay')

                # sleeping time between sequence
                if self.settings["nbr_meas"] > 1:
                    time.sleep(sleep_time)  # waiting for next measurement (time-lapse)
            self.status = 'idle'

        self.thread = threading.Thread(target=func)
        self.thread.start()

    def stop(self):
        """Stop the acquisition.
        """
        self.run = False
        if self.thread is not None:
            self.thread.join()
        self.exec_logger.debug(f'Status: {self.status}')


VERSION = '2.1.0'

print(colored(r' ________________________________' + '\n' +
              r'|  _  | | | ||  \/  || ___ \_   _|' + '\n' +
              r'| | | | |_| || .  . || |_/ / | |' + '\n' +
              r'| | | |  _  || |\/| ||  __/  | |' + '\n' +
              r'\ \_/ / | | || |  | || |    _| |_' + '\n' +
              r' \___/\_| |_/\_|  |_/\_|    \___/ ', 'red'))
print('OhmPi start')
print('Version:', VERSION)
platform, on_pi = OhmPi.get_platform()
if on_pi:
    print(colored(f'Running on {platform} platform', 'green'))
    # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
    #       and emit a warning otherwise
    if not arm64_imports:
        print(colored(f'Warning: Required packages are missing.\n'
                      f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow'))
else:
    print(colored(f'Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))

current_time = datetime.now()
print(current_time.strftime("%Y-%m-%d %H:%M:%S"))

# for testing
if __name__ == "__main__":
    ohmpi = OhmPi(settings='ohmpi_settings.json')