# -*- coding: utf-8 -*-
"""
created on January 6, 2020.
Updates may 2023.
Hardware: Licensed under CERN-OHL-S v2 or any later version
Software: Licensed under the GNU General Public License v3.0
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS), Arnaud WATLET (UMONS) and Guillaume BLANCHY (FNRS/ULiege).
"""

import os
from utils import get_platform
import json
import warnings
from copy import deepcopy
import numpy as np
import csv
import time
import shutil
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG
from logging import DEBUG
from plots import *

# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
    import board  # noqa
    import busio  # noqa
    import adafruit_tca9548a  # noqa
    import adafruit_ads1x15.ads1115 as ads  # noqa
    from adafruit_ads1x15.ads1x15 import Mode
    from adafruit_ads1x15.analog_in import AnalogIn  # noqa
    from adafruit_ads1x15.ads1x15 import Mode
    from adafruit_mcp230xx.mcp23008 import MCP23008  # noqa
    from adafruit_mcp230xx.mcp23017 import MCP23017  # noqa
    from adafruit_extended_bus import ExtendedI2C
    import digitalio  # noqa
    from digitalio import Direction  # noqa
    from gpiozero import CPUTemperature  # noqa
    import minimalmodbus  # noqa

    arm64_imports = True
except ImportError as error:
    if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG:
        print(colored(f'Import error: {error}', 'yellow'))
    arm64_imports = False
except Exception as error:
    print(colored(f'Unexpected error: {error}', 'red'))
    arm64_imports = None

class OhmPi(object):
    """ OhmPi class.
    """

    def __init__(self, settings=None, sequence=None, use_mux=False, mqtt=True, onpi=None, idps=False):
        """Constructs the ohmpi object

        Parameters
        ----------
        settings:

        sequence:

        use_mux:
            if True use the multiplexor to select active electrodes
        mqtt: bool, defaut: True
            if True publish on mqtt topics while logging, otherwise use other loggers only
        onpi: bool,None default: None
            if None, the platform on which the class is instantiated is determined to set on_pi to either True or False.
            if False the behaviour of an ohmpi will be partially emulated and return random data.
        idps:
            if true uses the DPS
        """

        if onpi is None:
            _, onpi = get_platform()

        self._sequence = sequence
        self.nb_samples = 0
        self.use_mux = use_mux
        self.on_pi = onpi  # True if run from the RaspberryPi with the hardware, otherwise False for random data
        self.status = 'idle'  # either running or idle
        self.thread = None  # contains the handle for the thread taking the measurement

        # set loggers
        config_exec_logger, _, config_data_logger, _, _, msg = setup_loggers(mqtt=mqtt)  # TODO: add SOH
        self.data_logger = config_data_logger
        self.exec_logger = config_exec_logger
        self.soh_logger = None  # TODO: Implement the SOH logger
        print(msg)

        # read in hardware parameters (config.py)
        self._read_hardware_config()

        # default acquisition settings
        self.settings = {
            'injection_duration': 0.2,
            'nb_meas': 1,
            'sequence_delay': 1,
            'nb_stack': 1,
            'export_path': 'data/measurement.csv',
            'tx_volt': 5
        }
        # read in acquisition settings
        if settings is not None:
            self.update_settings(settings)

        self.exec_logger.debug('Initialized with settings:' + str(self.settings))

        # read quadrupole sequence
        if sequence is not None:
            self.load_sequence(sequence)

        self.idps = idps  # flag to use dps for injection or not

        # connect to components on the OhmPi board
        if self.on_pi:
            # activation of I2C protocol
            self.i2c = busio.I2C(board.SCL, board.SDA)  # noqa
            if self.i2c_mux_address == 2:
                self.i2c_mux = self.i2c
            else:
                self.i2c_mux = ExtendedI2C(self.i2c_mux_address)

            # I2C connexion to MCP23008, for current injection
            self.mcp_board = MCP23008(self.i2c, address=self.mcp_board_address)
            self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run
            self.pin4.direction = Direction.OUTPUT
            self.pin4.value = True

            # ADS1115 for current measurement (AB)
            self.ads_current_address = 0x48
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)

            # ADS1115 for voltage measurement (MN)
            self.ads_voltage_address = 0x49
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)

            # current injection module
            if self.idps:
                #self.switch_dps('on')
                self.pin2 = self.mcp_board.get_pin(2) # dsp +
                self.pin2.direction = Direction.OUTPUT
                self.pin2.value = True
                self.pin3 = self.mcp_board.get_pin(3) # dsp -
                self.pin3.direction = Direction.OUTPUT
                self.pin3.value = True
                time.sleep(4)
                self.DPS = minimalmodbus.Instrument(port='/dev/ttyUSB0', slaveaddress=1)  # port name, address (decimal)
                self.DPS.serial.baudrate = 9600  # Baud rate 9600 as listed in doc
                self.DPS.serial.bytesize = 8  #
                self.DPS.serial.timeout = 1  # greater than 0.5 for it to work
                self.DPS.debug = False  #
                self.DPS.serial.parity = 'N'  # No parity
                self.DPS.mode = minimalmodbus.MODE_RTU  # RTU mode
                self.DPS.write_register(0x0001, 200, 0)  # max current allowed (100 mA for relays)
                # (last number) 0 is for mA, 3 is for A
                #self.soh_logger.debug(f'Battery voltage: {self.DPS.read_register(0x05,2 ):.3f}') TODO: SOH logger
                batt_level = self._read_battery_level()
                msg = f'Battery voltage: {batt_level:.3f}'
                if batt_level < 12:
                    print(colored(f'\u2611 {msg}', 'red'))
                else:
                    print(colored(f'\u2611 {msg}', 'green'))
                self.switch_dps('off')


            # injection courant and measure (TODO check if it works, otherwise back in run_measurement())
            self.pin0 = self.mcp_board.get_pin(0)
            self.pin0.direction = Direction.OUTPUT
            self.pin0.value = False
            self.pin1 = self.mcp_board.get_pin(1)
            self.pin1.direction = Direction.OUTPUT
            self.pin1.value = False

        # set controller
        self.mqtt = mqtt
        self.cmd_id = None
        if self.mqtt:
            import paho.mqtt.client as mqtt_client

            self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}"
                                   f" on {MQTT_CONTROL_CONFIG['hostname']} broker")

            def connect_mqtt() -> mqtt_client:
                def on_connect(mqttclient, userdata, flags, rc):
                    if rc == 0:
                        self.exec_logger.debug(f"Successfully connected to control broker:"
                                               f" {MQTT_CONTROL_CONFIG['hostname']}")
                    else:
                        self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}')

                client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False)
                client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'),
                                       MQTT_CONTROL_CONFIG['auth']['password'])
                client.on_connect = on_connect
                client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port'])
                return client

            try:
                self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}")
                self.controller = connect_mqtt()
            except Exception as e:
                self.exec_logger.debug(f'Unable to connect control broker: {e}')
                self.controller = None
            if self.controller is not None:
                self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}")
                try:
                    self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos'])

                    msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \
                          f" on {MQTT_CONTROL_CONFIG['hostname']} broker"
                    self.exec_logger.debug(msg)
                    print(colored(f'\u2611 {msg}', 'blue'))
                except Exception as e:
                    self.exec_logger.warning(f'Unable to subscribe to control topic : {e}')
                    self.controller = None
                publisher_config = MQTT_CONTROL_CONFIG.copy()
                publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic']
                publisher_config.pop('ctrl_topic')

                def on_message(client, userdata, message):
                    command = message.payload.decode('utf-8')
                    self.exec_logger.debug(f'Received command {command}')
                    self._process_commands(command)

                self.controller.on_message = on_message
            else:
                self.controller = None
                self.exec_logger.warning('No connection to control broker.'
                                         ' Use python/ipython to interact with OhmPi object...')

    @staticmethod
    
    def append_and_save(filename: str, last_measurement: dict, cmd_id=None):
        """Appends and saves the last measurement dict.

        Parameters
        ----------
        filename : str
            filename to save the last measurement dataframe
        last_measurement : dict
            Last measurement taken in the form of a python dictionary
        cmd_id : str, optional
            Unique command identifier
        """
        last_measurement = deepcopy(last_measurement)
        if 'fulldata' in last_measurement:
            d = last_measurement['fulldata']
            n = d.shape[0]
            if n > 1:
                idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0]))
                udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1]))
                tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2]))
                uxdic = dict(zip(['ux' + str(i) for i in range(n)], d[:, 3]))
                uydic = dict(zip(['uy' + str(i) for i in range(n)], d[:, 4]))
                last_measurement.update(idic)
                last_measurement.update(udic)
                last_measurement.update(tdic)
                last_measurement.update(uxdic)
                last_measurement.update(uydic)
            last_measurement.pop('fulldata')

        if os.path.isfile(filename):
            # Load data file and append data to it
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writerow(last_measurement)
                # last_measurement.to_csv(f, header=False)
        else:
            # create data file and add headers
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writeheader()
                w.writerow(last_measurement)

    def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5, autogain=True):
        """Estimates best Tx voltage based on different strategies.
        At first a half-cycle is made for a short duration with a fixed
        known voltage. This gives us Iab and Rab. We also measure Vmn.
        A constant c = vmn/iab is computed (only depends on geometric
        factor and ground resistivity, that doesn't change during a
        quadrupole). Then depending on the strategy, we compute which
        vab to inject to reach the minimum/maximum Iab current or
        min/max Vmn.
        This function also compute the polarity on Vmn (on which pin
        of the ADS1115 we need to measure Vmn to get the positive value).

        Parameters
        ----------
        best_tx_injtime : float, optional
            Time in milliseconds for the half-cycle used to compute Rab.
        strategy : str, optional
            Either:
            - vmax : compute Vab to reach a maximum Iab and Vmn
            - constant : apply given Vab
        tx_volt : float, optional
            Voltage to apply for guessing the best voltage. 5 V applied
            by default. If strategy "constant" is chosen, constant voltage
            to applied is "tx_volt".

        Returns
        -------
        vab : float
            Proposed Vab according to the given strategy.
        polarity : int
            Either 1 or -1 to know on which pin of the ADS the Vmn is measured.
        """

        # hardware limits
        voltage_min = 10.  # mV
        voltage_max = 4500.
        current_min = voltage_min / (self.r_shunt * 50)  # mA
        current_max = voltage_max / (self.r_shunt * 50)
        tx_max = 50.  # volt

        # check of volt
        volt = tx_volt
        if volt > tx_max:
            self.exec_logger.warning('Sorry, cannot inject more than 50 V, set it back to 5 V')
            volt = 5.

        # redefined the pin of the mcp (needed when relays are connected)
        self.pin0 = self.mcp_board.get_pin(0)
        self.pin0.direction = Direction.OUTPUT
        self.pin0.value = False
        self.pin1 = self.mcp_board.get_pin(1)
        self.pin1.direction = Direction.OUTPUT
        self.pin1.value = False

        # select a polarity to start with
        self.pin0.value = True
        self.pin1.value = False
        
        
        if strategy == 'constant':
            vab = volt

            self.DPS.write_register(0x0000, volt, 2)
            self.DPS.write_register(0x09, 1)  # DPS5005 on
            time.sleep(best_tx_injtime)  # inject for given tx time
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
            # autogain
            if autogain:
                gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
                gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
                gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
                gain_voltage = np.min([gain_voltage0, gain_voltage2])  # TODO: separate gain for P0 and P2
                self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address)
                self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address)
            # we measure the voltage on both A0 and A2 to guess the polarity
            I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt  # noqa measure current
            U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.  # noqa measure voltage
            U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.  # noqa
            # check polarity
            polarity = 1  # by default, we guessed it right
            vmn = U0
            if U0 < 0:  # we guessed it wrong, let's use a correction factor
                polarity = -1
                vmn = U2
        
        elif strategy == 'vmax':
            # implement different strategies
            I=0
            vmn=0
            count=0
            while I < 3 or abs(vmn) < 20 :  #TODO: hardware related - place in config
            
                if count > 0 :
                    #print('o', volt)
                    volt = volt + 2
                   # print('>', volt)
                count=count+1
                if volt > 50:
                    break
        
                # set voltage for test
                if count==1:
                    self.DPS.write_register(0x09, 1)  # DPS5005 on
                    time.sleep(best_tx_injtime)  # inject for given tx time
                self.DPS.write_register(0x0000, volt, 2)
                self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
                self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
                # autogain
                if autogain:
                    gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
                    gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
                    gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
                    gain_voltage = np.min([gain_voltage0, gain_voltage2])  #TODO: separate gain for P0 and P2
                    self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address)
                    self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address)
                # we measure the voltage on both A0 and A2 to guess the polarity
                for i in range(10):
                    I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt  # noqa measure current
                    U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.  # noqa measure voltage
                    U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.  # noqa
                    time.sleep(best_tx_injtime)

                # check polarity
                polarity = 1  # by default, we guessed it right
                vmn = U0
                if U0 < 0:  # we guessed it wrong, let's use a correction factor
                    polarity = -1
                    vmn = U2
            
            n = 0
            while (abs(vmn) > voltage_max or I > current_max) and volt>0:  #If starting voltage is too high, need to lower it down
                # print('we are out of range! so decreasing volt')
                volt = volt - 2
                self.DPS.write_register(0x0000, volt, 2)
                #self.DPS.write_register(0x09, 1)  # DPS5005 on
                I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt
                U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
                U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
                polarity = 1  # by default, we guessed it right
                vmn = U0
                if U0 < 0:  # we guessed it wrong, let's use a correction factor
                    polarity = -1
                    vmn = U2
                n+=1
                if n > 25 :   
                    break
                        
            factor_I = (current_max) / I
            factor_vmn = voltage_max / vmn
            factor = factor_I
            if factor_I > factor_vmn:
                factor = factor_vmn
            #print('factor', factor_I, factor_vmn)
            vab = factor * volt * 0.9
            if vab > tx_max:
                vab = tx_max
            print(factor_I, factor_vmn, 'factor!!')


        elif strategy == 'vmin':
            # implement different strategy
            I=20
            vmn=400
            count=0
            while I > 10 or abs(vmn) > 300 :  #TODO: hardware related - place in config
                if count > 0 :
                    volt = volt - 2
                print(volt, count)
                count=count+1
                if volt > 50:
                    break

                # set voltage for test
                self.DPS.write_register(0x0000, volt, 2)
                if count==1:
                    self.DPS.write_register(0x09, 1)  # DPS5005 on
                time.sleep(best_tx_injtime)  # inject for given tx time
                self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
                self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
                # autogain
                if autogain:
                    gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
                    gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
                    gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
                    gain_voltage = np.min([gain_voltage0, gain_voltage2])  #TODO: separate gain for P0 and P2
                    self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address)
                    self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address)
                # we measure the voltage on both A0 and A2 to guess the polarity
                I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt  # noqa measure current
                U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.  # noqa measure voltage
                U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.  # noqa

                # check polarity
                polarity = 1  # by default, we guessed it right
                vmn = U0
                if U0 < 0:  # we guessed it wrong, let's use a correction factor
                    polarity = -1
                    vmn = U2

            n=0
            while (abs(vmn) < voltage_min or I < current_min) and volt > 0 :  #If starting voltage is too high, need to lower it down
                # print('we are out of range! so increasing volt')
                volt = volt + 2
                print(volt)
                self.DPS.write_register(0x0000, volt, 2)
                #self.DPS.write_register(0x09, 1)  # DPS5005 on
                #time.sleep(best_tx_injtime)
                I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt
                U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
                U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
                polarity = 1  # by default, we guessed it right
                vmn = U0
                if U0 < 0:  # we guessed it wrong, let's use a correction factor
                    polarity = -1
                    vmn = U2
                n+=1
                if n > 25 :
                    break

            vab = volt

        self.DPS.write_register(0x09, 0) # DPS5005 off
        # print('polarity', polarity)
        self.pin0.value = False
        self.pin1.value = False
        # # compute constant
        # c = vmn / I
        Rab = (volt * 1000.) / I  # noqa

        self.exec_logger.debug(f'Rab = {Rab:.2f} Ohms')

        # self.DPS.write_register(0x09, 0) # DPS5005 off
        self.pin0.value = False
        self.pin1.value = False

        return vab, polarity, Rab

    @staticmethod
    def _find_identical_in_line(quads):
        """Finds quadrupole where A and B are identical.
        If A and B are connected to the same electrode, the Pi burns (short-circuit).

        Parameters
        ----------
        quads : numpy.ndarray
            List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.

        Returns
        -------
        output : numpy.ndarray 1D array of int
            List of index of rows where A and B are identical.
        """

        # if we have a 1D array (so only 1 quadrupole), make it a 2D array
        if len(quads.shape) == 1:
            quads = quads[None, :]

        output = np.where(quads[:, 0] == quads[:, 1])[0]

        return output

    def _gain_auto(self, channel):
        """Automatically sets the gain on a channel

        Parameters
        ----------
        channel : ads.ADS1x15
            Instance of ADS where voltage is measured.

        Returns
        -------
        gain : float
            Gain to be applied on ADS1115.
        """

        gain = 2 / 3
        if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.0):
            gain = 2
        elif (abs(channel.voltage) < 1.0) and (abs(channel.voltage) >= 0.500):
            gain = 4
        elif (abs(channel.voltage) < 0.500) and (abs(channel.voltage) >= 0.250):
            gain = 8
        elif abs(channel.voltage) < 0.250:
            gain = 16
        self.exec_logger.debug(f'Setting gain to {gain}')
        return gain

    def get_data(self, survey_names=None, cmd_id=None):
        """Get available data.
        
        Parameters
        ----------
        survey_names : list of str, optional
            List of filenames already available from the html interface. So
            their content won't be returned again. Only files not in the list
            will be read.
        cmd_id : str, optional
            Unique command identifier
        """
        # get all .csv file in data folder
        if survey_names is None:
            survey_names = []
        fnames = [fname for fname in os.listdir('data/') if fname[-4:] == '.csv']
        ddic = {}
        if cmd_id is None:
            cmd_id = 'unknown'
        for fname in fnames:
            if ((fname != 'readme.txt')
                    and ('_rs' not in fname)
                    and (fname.replace('.csv', '') not in survey_names)):
                try:
                    data = np.loadtxt('data/' + fname, delimiter=',',
                                      skiprows=1, usecols=(1, 2, 3, 4, 8))
                    data = data[None, :] if len(data.shape) == 1 else data
                    ddic[fname.replace('.csv', '')] = {
                        'a': data[:, 0].astype(int).tolist(),
                        'b': data[:, 1].astype(int).tolist(),
                        'm': data[:, 2].astype(int).tolist(),
                        'n': data[:, 3].astype(int).tolist(),
                        'rho': data[:, 4].tolist(),
                    }
                except Exception as e:
                    print(fname, ':', e)
        rdic = {'cmd_id': cmd_id, 'data': ddic}
        self.data_logger.info(json.dumps(rdic))
        return ddic

    def interrupt(self, cmd_id=None):
        """Interrupts the acquisition

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """
        self.status = 'stopping'
        if self.thread is not None:
            self.thread.join()
            self.exec_logger.debug('Interrupted sequence acquisition...')
        else:
            self.exec_logger.debug('No sequence measurement thread to interrupt.')
        self.exec_logger.debug(f'Status: {self.status}')

    def load_sequence(self, filename: str, cmd_id=None):
        """Reads quadrupole sequence from file.

        Parameters
        ----------
        filename : str
            Path of the .csv or .txt file with A, B, M and N electrodes.
            Electrode index start at 1.
        cmd_id : str, optional
            Unique command identifier

        Returns
        -------
        sequence : numpy.array
            Array of shape (number quadrupoles * 4).
        """
        self.exec_logger.debug(f'Loading sequence {filename}')
        sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32)  # load quadrupole file

        if sequence is not None:
            self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.')

        # locate lines where the electrode index exceeds the maximum number of electrodes
        test_index_elec = np.array(np.where(sequence > self.max_elec))

        # locate lines where electrode A == electrode B
        test_same_elec = self._find_identical_in_line(sequence)

        # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
        if test_index_elec.size != 0:
            for i in range(len(test_index_elec[0, :])):
                self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
                                       f'exceeds the maximum number of electrodes')
            # sys.exit(1)
            sequence = None
        elif len(test_same_elec) != 0:
            for i in range(len(test_same_elec)):
                self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
            # sys.exit(1)
            sequence = None

        if sequence is not None:
            self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.')
        else:
            self.exec_logger.warning(f'Unable to load sequence {filename}')
        self.sequence = sequence

    def measure(self, **kwargs):
        warnings.warn('This function is deprecated. Use run_multiple_sequences() instead.', DeprecationWarning)
        self.run_multiple_sequences(**kwargs)

    def _process_commands(self, message: str):
        """Processes commands received from the controller(s)

        Parameters
        ----------
        message : str
            message containing a command and arguments or keywords and arguments
        """
        status = False
        cmd_id = '?'
        try:
            decoded_message = json.loads(message)
            self.exec_logger.debug(f'Decoded message {decoded_message}')
            cmd_id = decoded_message.pop('cmd_id', None)
            cmd = decoded_message.pop('cmd', None)
            # args = decoded_message.pop('args', None)
            # if args is not None:
            #    if len(args) != 0:
            #        if args[0] != '[':
            #            args = f'["{args}"]'
            #        self.exec_logger.debug(f'args to decode: {args}')
            #        args = json.loads(args) if args != '[]' else None
            #        self.exec_logger.debug(f'Decoded args {args}')
            #    else:
            #        args = None
            kwargs = decoded_message.pop('kwargs', None)
            # if kwargs is not None:
            #     if len(kwargs) != 0:
            #         if kwargs[0] != '{':
            #             kwargs = '{"' + kwargs + '"}'
            #         self.exec_logger.debug(f'kwargs to decode: {kwargs}')
            #         kwargs = json.loads(kwargs) if kwargs != '' else None
            #         self.exec_logger.debug(f'Decoded kwargs {kwargs}')
            #     else:
            #         kwargs = None
            self.exec_logger.debug(f"Calling method {cmd}({str(kwargs) if kwargs is not None else ''})")
            # self.exec_logger.debug(f"Calling method {cmd}({str(args) + ', ' if args is not None else ''}"
            #                        f"{str(kwargs) if kwargs is not None else ''})")
            if cmd_id is None:
                self.exec_logger.warning('You should use a unique identifier for cmd_id')
            if cmd is not None:
                try:
                    # if args is None:
                    #     if kwargs is None:
                    #         output = getattr(self, cmd)()
                    #     else:
                    #         output = getattr(self, cmd)(**kwargs)
                    # else:
                    if kwargs is None:
                        output = getattr(self, cmd)()
                    else:
                        output = getattr(self, cmd)(**kwargs)
                    status = True
                except Exception as e:
                    self.exec_logger.error(
                        f"Unable to execute {cmd}({str(kwargs) if kwargs is not None else ''}): {e}")
                    status = False
        except Exception as e:
            self.exec_logger.warning(f'Unable to decode command {message}: {e}')
            status = False
        finally:
            reply = {'cmd_id': cmd_id, 'status': status}
            reply = json.dumps(reply)
            self.exec_logger.debug(f'Execution report: {reply}')

    def quit(self, cmd_id=None):
        """Quits OhmPi

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """

        self.exec_logger.debug(f'Quitting ohmpi.py following command {cmd_id}')
        exit()

    def _read_hardware_config(self):
        """Reads hardware configuration from config.py
        """
        self.exec_logger.debug('Getting hardware config')
        self.id = OHMPI_CONFIG['id']  # ID of the OhmPi
        self.r_shunt = OHMPI_CONFIG['R_shunt']  # reference resistance value in ohm
        self.Imax = OHMPI_CONFIG['Imax']  # maximum current
        self.exec_logger.debug(f'The maximum current cannot be higher than {self.Imax} mA')
        self.coef_p2 = OHMPI_CONFIG['coef_p2']  # slope for current conversion for ads.P2, measurement in V/V
        self.nb_samples = OHMPI_CONFIG['nb_samples']  # number of samples measured for each stack
        self.version = OHMPI_CONFIG['version']  # hardware version
        self.max_elec = OHMPI_CONFIG['max_elec']  # maximum number of electrodes
        self.board_addresses = OHMPI_CONFIG['board_addresses']
        self.board_version = OHMPI_CONFIG['board_version']
        self.mcp_board_address = OHMPI_CONFIG['mcp_board_address']
        self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')
        self.i2c_mux_address = OHMPI_CONFIG['i2c_mux_address']
        self.vmn_offset = OHMPI_CONFIG['vmn_offset']

    def read_quad(self, **kwargs):
        warnings.warn('This function is deprecated. Use load_sequence instead.', DeprecationWarning)
        self.load_sequence(**kwargs)

    def _read_voltage(self):
        pass

    def _read_battery_level(self):
        return self.DPS.read_register(0x05, 2)

    def remove_data(self, cmd_id=None):
        """Remove all data in the data folder

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """
        self.exec_logger.debug(f'Removing all data following command {cmd_id}')
        shutil.rmtree('data')
        os.mkdir('data')

    def restart(self, cmd_id=None):
        """Restarts the Raspberry Pi

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """

        if self.on_pi:
            self.exec_logger.info(f'Restarting pi following command {cmd_id}...')
            os.system('reboot')
        else:
            self.exec_logger.warning('Not on Raspberry Pi, skipping reboot...')

    def run_measurement(self, quad=None, nb_stack=None, injection_duration=None,
                        autogain=True, strategy='constant', tx_volt=None, best_tx_injtime=0.1, duty_cycle=0.5,
                        cmd_id=None):
        """Measures on a quadrupole and returns transfer resistance.

        Parameters
        ----------
        quad : iterable (list of int)
            Quadrupole to measure, just for labelling. Only switch_mux_on/off
            really create the route to the electrodes.
        nb_stack : int, optional
            Number of stacks. A stacl is considered two half-cycles (one
            positive, one negative).
        injection_duration : int, optional
            Injection time in seconds.
        autogain : bool, optional
            If True, will adapt the gain of the ADS1115 to maximize the
            resolution of the reading.
        strategy : str, optional
            (V3.0 only) If we search for best voltage (tx_volt == 0), we can choose
            vmax strategy : find the highest voltage that stays in the range
            For a constant value, just set the tx_volt.
        tx_volt : float, optional
            (V3.0 only) If specified, voltage will be imposed. If 0, we will look
            for the best voltage. If the best Tx cannot be found, no
            measurement will be taken and values will be NaN.
        best_tx_injtime : float, optional
            (V3.0 only) Injection time in seconds used for finding the best voltage.
        duty_cycle : float, optional, default: 0.5
            Ratio of time between injection duration and no injection duration during a half-cycle
            It should be comprised between 0.5 (no injection duration same as injection duration) and 1 (no injection
            duration equal to 0)
        cmd_id : str, optional
            Unique command identifier
        """
        self.exec_logger.debug('Starting measurement')
        self.exec_logger.debug('Waiting for data')

        # check arguments
        if quad is None:
            quad = [0, 0, 0, 0]

        if self.on_pi:
            if nb_stack is None:
                nb_stack = self.settings['nb_stack']
            if injection_duration is None:
                injection_duration = self.settings['injection_duration']
            if tx_volt is None :
                tx_volt = self.settings['tx_volt']
            tx_volt = float(tx_volt)

            # inner variable initialization
            sum_i = 0
            sum_vmn = 0
            sum_ps = 0

            # let's define the pin again as if we run through measure()
            # as it's run in another thread, it doesn't consider these
            # and this can lead to short circuit!

            self.pin0 = self.mcp_board.get_pin(0)
            self.pin0.direction = Direction.OUTPUT
            self.pin0.value = False
            self.pin1 = self.mcp_board.get_pin(1)
            self.pin1.direction = Direction.OUTPUT
            self.pin1.value = False
            self.pin7 = self.mcp_board.get_pin(7)  # IHM on mesaurement
            self.pin7.direction = Direction.OUTPUT
            self.pin7.value = False

            if self.sequence is None:
                if self.idps:
                    # self.switch_dps('on')
                    self.pin2 = self.mcp_board.get_pin(2)  # dsp +
                    self.pin2.direction = Direction.OUTPUT
                    self.pin2.value = True
                    self.pin3 = self.mcp_board.get_pin(3)  # dsp -
                    self.pin3.direction = Direction.OUTPUT
                    self.pin3.value = True
                    time.sleep(4)

            self.pin5 = self.mcp_board.get_pin(5)  # IHM on mesaurement
            self.pin5.direction = Direction.OUTPUT
            self.pin5.value = True
            self.pin6 = self.mcp_board.get_pin(6)  # IHM on mesaurement
            self.pin6.direction = Direction.OUTPUT
            self.pin6.value = False
            self.pin7 = self.mcp_board.get_pin(7)  # IHM on mesaurement
            self.pin7.direction = Direction.OUTPUT
            self.pin7.value = False
            if self.idps:
                if self.DPS.read_register(0x05, 2) < 11:
                    self.pin7.value = True  # max current allowed (100 mA for relays) #voltage

            # get best voltage to inject AND polarity
            if self.idps:
                self.DPS.write_register(0X001, 2000, 0) #max current allow 200 mA                          
                tx_volt, polarity, Rab = self._compute_tx_volt(
                    best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt, autogain=autogain)
                self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V')
            else:
                polarity = 1
                Rab = None

            # first reset the gain to 2/3 before trying to find best gain 
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
                                        address=self.ads_current_address)
            self.ads_current.mode= Mode.CONTINUOUS                             
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
                                        address=self.ads_voltage_address)
            self.ads_voltage.mode= Mode.CONTINUOUS
            # turn on the power supply
            start_delay = None
            end_delay = None
            out_of_range = False
            if self.idps:
                if not np.isnan(tx_volt):
                    self.DPS.write_register(0x0000, tx_volt, 2)  # set tx voltage in V
                    self.DPS.write_register(0x09, 1)  # DPS5005 on
                    time.sleep(2) # do not chnage this value 1 second is the minimum
                else:
                    self.exec_logger.debug('No best voltage found, will not take measurement')
                    out_of_range = True

            if not out_of_range:  # we found a Vab in the range so we measure
                gain = 2 / 3
                self.ads_voltage = ads.ADS1115(self.i2c, gain=gain, data_rate=860,
                                            address=self.ads_voltage_address)
                self.ads_voltage.mode= Mode.CONTINUOUS 
                if autogain:
                    # compute autogain
                    gain_voltage = []
                    for n in [0, 1]:  # make short cycle for gain computation
                        if n == 0:
                            self.pin0.value = True
                            self.pin1.value = False
                            if self.board_version == 'mb.2023.0.0':
                                self.pin6.value = True  # IHM current injection led on
                        else:
                            self.pin0.value = False
                            self.pin1.value = True  # current injection nr2
                            if self.board_version == 'mb.2023.0.0':
                                self.pin6.value = True  # IHM current injection led on

                        time.sleep(best_tx_injtime)
                        gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
                        gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
                        gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
                        # if polarity > 0:
                        #     if n == 0:
                        #         gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
                        #     else:
                        #         gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
                        # else:
                        #     if n == 0:
                        #         gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
                        #     else:
                        #         gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))

                        self.pin0.value = False
                        self.pin1.value = False
                        time.sleep(best_tx_injtime)
                        # if n == 0:
                        #     gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
                        # else:
                        #     gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
                        if self.board_version == 'mb.2023.0.0':
                            self.pin6.value = False  # IHM current injection led off
                        gain = np.min(gain_voltage)
                    self.exec_logger.debug(f'Gain current: {gain_current:.3f}, gain voltage: {gain_voltage[0]:.3f}, '
                                        f'{gain_voltage[1]:.3f}')
                    self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860,
                                                address=self.ads_current_address)
                    self.ads_current.mode= Mode.CONTINUOUS

                self.pin0.value = False
                self.pin1.value = False

                # one stack = 2 half-cycles (one positive, one negative)
                pinMN = 0 if polarity > 0 else 2  # noqa

                # sampling for each stack at the end of the injection
                sampling_interval = 2  # ms    # TODO: make this a config option
                self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1  # TODO: check this strategy

                # full data for waveform
                fulldata = []

                #  we sample every 10 ms (as using AnalogIn for both current
                # and voltage takes about 7 ms). When we go over the injection
                # duration, we break the loop and truncate the meas arrays
                # only the last values in meas will be taken into account
                start_time = time.time()  # start counter
                for n in range(0, nb_stack * 2):  # for each half-cycles
                    # current injection
                    if (n % 2) == 0:
                        self.pin0.value = True
                        self.pin1.value = False
                        if autogain:  # select gain computed on first half cycle
                            self.ads_voltage = ads.ADS1115(self.i2c, gain=np.min(gain_voltage), data_rate=860,
                                                        address=self.ads_voltage_address)
                            self.ads_voltage.mode= Mode.CONTINUOUS 
                    else:
                        self.pin0.value = False
                        self.pin1.value = True  # current injection nr2
                        if autogain:  # select gain computed on first half cycle
                            self.ads_voltage = ads.ADS1115(self.i2c, gain=np.min(gain_voltage), data_rate=860,
                                                        address=self.ads_voltage_address)
                            self.ads_voltage.mode= Mode.CONTINUOUS 
                    self.exec_logger.debug(f'Stack {n} {self.pin0.value} {self.pin1.value}')
                    if self.board_version == 'mb.2023.0.0':
                        self.pin6.value = True  # IHM current injection led on
                    # measurement of current i and voltage u during injection
                    meas = np.zeros((self.nb_samples, 5)) * np.nan
                    start_delay = time.time()  # stating measurement time
                    dt = 0
                    k = 0
                    for k in range(0, self.nb_samples):
                        # reading current value on ADS channels
                        meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
                        if self.board_version == 'mb.2023.0.0':
                            # if pinMN == 0:
                            #     meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
                            #     meas[k, 3] = meas[k, 1]
                            #     meas[k, 4] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
                            # else:
                            #     meas[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
                            #     meas[k, 4] = meas[k, 1]
                            #     meas[k, 3] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
                            u0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
                            u2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
                            u = np.max([u0, u2]) * (np.heaviside(u0 - u2, 1.) * 2 - 1.) - self.vmn_offset
                            meas[k, 1] = u
                            meas[k, 3] = u0
                            meas[k, 4] = u2 *-1.0
                        elif self.board_version == '22.10':
                            meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000
                        # else:
                        #    self.exec_logger.debug('Unknown board')
                        time.sleep(sampling_interval / 1000)
                        dt = time.time() - start_delay  # real injection time (s)
                        meas[k, 2] = time.time() - start_time
                        if dt > (injection_duration - 0 * sampling_interval / 1000.):
                            break

                    # stop current injection
                    self.pin0.value = False
                    self.pin1.value = False
                    if self.board_version == 'mb.2023.0.0':
                        self.pin6.value = False  # IHM current injection led on
                    end_delay = time.time()

                    # truncate the meas array if we didn't fill the last samples  #TODO: check why
                    meas = meas[:k + 1]

                    # measurement of current i and voltage u during off time
                    measpp = np.zeros((int(meas.shape[0] * (1 / duty_cycle - 1)), 5)) * np.nan
                    time.sleep(sampling_interval / 1000)
                    start_delay_off = time.time()  # stating measurement time
                    dt = 0
                    for k in range(0, measpp.shape[0]):
                        # reading current value on ADS channels
                        measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000.) / (50 * self.r_shunt)
                        if self.board_version == 'mb.2023.0.0':
                            # if pinMN == 0:
                            #     measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
                            #     measpp[k, 3] = measpp[k, 1]
                            #     measpp[k, 4] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
                            # else:
                            #     measpp[k, 3] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
                            #     measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
                            #     measpp[k, 4] = measpp[k, 1]
                            u0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
                            u2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
                            u = np.max([u0, u2]) * (np.heaviside(u0 - u2, 1.) * 2 - 1.) - self.vmn_offset
                            measpp[k, 1] = u
                            measpp[k, 3] = u0
                            measpp[k, 4] = u2 * -1.0
                        elif self.board_version == '22.10':
                            measpp[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000.
                        else:
                            self.exec_logger.debug('unknown board')
                        time.sleep(sampling_interval / 1000)
                        dt = time.time() - start_delay_off  # real injection time (s)
                        measpp[k, 2] = time.time() - start_time
                        if dt > (injection_duration - 0 * sampling_interval / 1000.):
                            break

                    end_delay_off = time.time()

                    # truncate the meas array if we didn't fill the last samples
                    measpp = measpp[:k + 1]

                    # we alternate on which ADS1115 pin we measure because of sign of voltage
                    if pinMN == 0:
                        pinMN = 2  # noqa
                    else:
                        pinMN = 0  # noqa

                    # store data for full wave form
                    fulldata.append(meas)
                    fulldata.append(measpp)

                # TODO get battery voltage and warn if battery is running low
                # TODO send a message on SOH stating the battery level

                # let's do some calculation (out of the stacking loop)

                # i_stack = np.empty(2 * nb_stack, dtype=object)
                # vmn_stack = np.empty(2 * nb_stack, dtype=object)
                i_stack, vmn_stack = [], []
                # select appropriate window length to average the readings
                window = int(np.min([f.shape[0] for f in fulldata[::2]]) // 3)
                for n, meas in enumerate(fulldata[::2]):
                    # take average from the samples per stack, then sum them all
                    # average for the last third of the stacked values
                    #  is done outside the loop
                    i_stack.append(meas[-int(window):, 0])
                    vmn_stack.append(meas[-int(window):, 1])

                    sum_i = sum_i + (np.mean(meas[-int(meas.shape[0] // 3):, 0]))
                    vmn1 = np.mean(meas[-int(meas.shape[0] // 3), 1])
                    if (n % 2) == 0:
                        sum_vmn = sum_vmn - vmn1
                        sum_ps = sum_ps + vmn1
                    else:
                        sum_vmn = sum_vmn + vmn1
                        sum_ps = sum_ps + vmn1

            else:
                sum_i = np.nan
                sum_vmn = np.nan
                sum_ps = np.nan
                fulldata = None

            if self.idps:
                self.DPS.write_register(0x0000, 0, 2)  # reset to 0 volt
                self.DPS.write_register(0x09, 0)  # DPS5005 off

            # reshape full data to an array of good size
            # we need an array of regular size to save in the csv
            if not out_of_range:
                fulldata = np.vstack(fulldata)
                # we create a big enough array given nb_samples, number of
                # half-cycles (1 stack = 2 half-cycles), and twice as we
                # measure decay as well
                a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 5)) * np.nan
                a[:fulldata.shape[0], :] = fulldata
                fulldata = a
            else:
                np.array([[]])

            vmn_stack_mean = np.mean(
                [np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) / 2 for i in range(nb_stack)])
            vmn_std = np.sqrt(np.std(vmn_stack[::2]) ** 2 + np.std(
                vmn_stack[1::2]) ** 2)  # np.sum([np.std(vmn_stack[::2]),np.std(vmn_stack[1::2])])
            i_stack_mean = np.mean(i_stack)
            i_std = np.mean(np.array([np.std(i_stack[::2]), np.std(i_stack[1::2])]))
            r_stack_mean = vmn_stack_mean / i_stack_mean
            r_stack_std = np.sqrt((vmn_std / vmn_stack_mean) ** 2 + (i_std / i_stack_mean) ** 2) * r_stack_mean
            ps_stack_mean = np.mean(
                np.array([np.mean(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) for i in range(nb_stack)]))

            # create a dictionary and compute averaged values from all stacks
            # if self.board_version == 'mb.2023.0.0':
            d = {
                "time": datetime.now().isoformat(),
                "A": quad[0],
                "B": quad[1],
                "M": quad[2],
                "N": quad[3],
                "inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
                "Vmn [mV]": sum_vmn / (2 * nb_stack),
                "I [mA]": sum_i / (2 * nb_stack),
                "R [ohm]": sum_vmn / sum_i,
                "Ps [mV]": sum_ps / (2 * nb_stack),
                "nbStack": nb_stack,
                "Vab [V]": tx_volt if not out_of_range else 0.,
                "CPU temp [degC]": CPUTemperature().temperature,
                "Nb samples [-]": self.nb_samples,
                "fulldata": fulldata,
                "I_stack [mA]": i_stack_mean,
                "I_std [mA]": i_std,
                "I_per_stack [mA]": np.array([np.mean(i_stack[i * 2:i * 2 + 2]) for i in range(nb_stack)]),
                "Vmn_stack [mV]": vmn_stack_mean,
                "Vmn_std [mV]": vmn_std,
                "Vmn_per_stack [mV]": np.array(
                    [np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1))[0] / 2 for i in range(nb_stack)]),
                "R_stack [ohm]": r_stack_mean,
                "R_std [ohm]": r_stack_std,
                "R_per_stack [ohm]": np.mean(
                    [np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) / 2 for i in range(nb_stack)]) / np.array(
                    [np.mean(i_stack[i * 2:i * 2 + 2]) for i in range(nb_stack)]),
                "PS_per_stack [mV]": np.array(
                    [np.mean(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) for i in range(nb_stack)]),
                "PS_stack [mV]": ps_stack_mean,
                "Rab [ohm]": Rab,
                "Pab [W]": tx_volt * i_stack_mean/1000.,
                "Gain_Vmn": gain,
                "Tx_battery [V]":self._read_battery_level()
            }
            # print(np.array([(vmn_stack[i*2:i*2+2]) for i in range(nb_stack)]))
            # elif self.board_version == '22.10':
            #     d = {
            #         "time": datetime.now().isoformat(),
            #         "A": quad[0],
            #         "B": quad[1],
            #         "M": quad[2],
            #         "N": quad[3],
            #         "inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
            #         "Vmn [mV]": sum_vmn / (2 * nb_stack),
            #         "I [mA]": sum_i / (2 * nb_stack),
            #         "R [ohm]": sum_vmn / sum_i,
            #         "Ps [mV]": sum_ps / (2 * nb_stack),
            #         "nbStack": nb_stack,
            #         "Tx [V]": tx_volt if not out_of_range else 0.,
            #         "CPU temp [degC]": CPUTemperature().temperature,
            #         "Nb samples [-]": self.nb_samples,
            #         "fulldata": fulldata,
            #     }

        else:  # for testing, generate random data
            d = {'time': datetime.now().isoformat(), 'A': quad[0], 'B': quad[1], 'M': quad[2], 'N': quad[3],
                'R [ohm]': np.abs(np.random.randn(1)).tolist()}

        # to the data logger
        dd = d.copy()
        dd.pop('fulldata')  # too much for logger
        dd.update({'A': str(dd['A'])})
        dd.update({'B': str(dd['B'])})
        dd.update({'M': str(dd['M'])})
        dd.update({'N': str(dd['N'])})

        # round float to 2 decimal
        for key in dd.keys():
            if isinstance(dd[key], float):
                dd[key] = np.round(dd[key], 3)

        dd['cmd_id'] = str(cmd_id)
        self.data_logger.info(dd)
        self.pin5.value = False  # IHM led on measurement off
        if self.sequence is None:
            self.switch_dps('off')

        return d


    def run_multiple_sequences(self, cmd_id=None, sequence_delay=None, nb_meas=None, **kwargs):
        """Runs multiple sequences in a separate thread for monitoring mode.
           Can be stopped by 'OhmPi.interrupt()'.
           Additional arguments are passed to run_measurement().

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        sequence_delay : int, optional
            Number of seconds at which the sequence must be started from each others.
        nb_meas : int, optional
            Number of time the sequence must be repeated.
        kwargs : dict, optional
            See help(k.run_measurement) for more info.
        """
        # self.run = True
        if sequence_delay is None:
            sequence_delay = self.settings['sequence_delay']
        sequence_delay = int(sequence_delay)
        if nb_meas is None:
            nb_meas = self.settings['nb_meas']
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')
        self.exec_logger.debug(f'Measuring sequence: {self.sequence}')

        def func():
            for g in range(0, nb_meas):  # for time-lapse monitoring
                if self.status == 'stopping':
                    self.exec_logger.warning('Data acquisition interrupted')
                    break
                t0 = time.time()
                self.run_sequence(**kwargs)

                # sleeping time between sequence
                dt = sequence_delay - (time.time() - t0)
                if dt < 0:
                    dt = 0
                if nb_meas > 1:
                    time.sleep(dt)  # waiting for next measurement (time-lapse)
            self.status = 'idle'

        self.thread = threading.Thread(target=func)
        self.thread.start()

    def run_sequence(self, cmd_id=None, plot_realtime_fulldata=False, plot_ads=False, **kwargs):
        """Runs sequence synchronously (=blocking on main thread).
           Additional arguments are passed to run_measurement().

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')
        self.exec_logger.debug(f'Measuring sequence: {self.sequence}')
        t0 = time.time()
        self.reset_mux()
        
        
        
        # create filename with timestamp
        filename = self.settings["export_path"].replace('.csv',
                                                        f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
        self.exec_logger.debug(f'Saving to {filename}')

        # make sure all multiplexer are off
        

        # measure all quadrupole of the sequence
        if self.sequence is None:
            n = 1
        else:
            n = self.sequence.shape[0]
        for i in range(0, n):
            if self.sequence is None:
                quad = np.array([0, 0, 0, 0])
            else:
                quad = self.sequence[i, :]  # quadrupole
            if self.status == 'stopping':
                break
            if i == 0:
                # call the switch_mux function to switch to the right electrodes
                # switch on DPS
                self.mcp_board = MCP23008(self.i2c, address=self.mcp_board_address)
                self.pin2 = self.mcp_board.get_pin(2) # dsp -
                self.pin2.direction = Direction.OUTPUT
                self.pin2.value = True
                self.pin3 = self.mcp_board.get_pin(3) # dsp -
                self.pin3.direction = Direction.OUTPUT
                self.pin3.value = True
                time.sleep (4)

                #self.switch_dps('on')
            time.sleep(.6)
            self.switch_mux_on(quad)
            # run a measurement
            if self.on_pi:
                acquired_data = self.run_measurement(quad, **kwargs)
            else:  # for testing, generate random data
                sum_vmn = np.random.rand(1)[0] * 1000.
                sum_i = np.random.rand(1)[0] * 100.
                cmd_id = np.random.randint(1000)
                acquired_data = {
                    "time": datetime.now().isoformat(),
                    "A": quad[0],
                    "B": quad[1],
                    "M": quad[2],
                    "N": quad[3],
                    "inj time [ms]": self.settings['injection_duration'] * 1000.,
                    "Vmn [mV]": sum_vmn,
                    "I [mA]": sum_i,
                    "R [ohm]": sum_vmn / sum_i,
                    "Ps [mV]": np.random.randn(1)[0] * 100.,
                    "nbStack": self.settings['nb_stack'],
                    "Tx [V]": np.random.randn(1)[0] * 5.,
                    "CPU temp [degC]": np.random.randn(1)[0] * 50.,
                    "Nb samples [-]": self.nb_samples,
                }
                self.data_logger.info(acquired_data)

            # switch mux off
            self.switch_mux_off(quad)
            # add command_id in dataset
            acquired_data.update({'cmd_id': cmd_id})
            # log data to the data logger
            # self.data_logger.info(f'{acquired_data}')
            # save data and print in a text file
            self.append_and_save(filename, acquired_data)
            self.exec_logger.debug(f'quadrupole {i + 1:d}/{n:d}')

            if plot_realtime_fulldata:
                realtime_plot_window = 10
                plt.ion()
                last_measurement = acquired_data["fulldata"][~np.isnan(acquired_data["fulldata"][:, 2])]
                if i==0:
                    xlim = [last_measurement[:, 2][-1] - realtime_plot_window, last_measurement[:, 2][-1]]
                    fig, (ax1, ax2), lines = plot_fulldata(last_measurement, realtime=True, xlim=xlim, plot_ads=plot_ads)
                    acquired_dataset = last_measurement
                else:
                    fig, (ax1, ax2), lines, acquired_dataset = \
                            update_realtime_fulldata_plot(last_measurement, acquired_dataset, lines,
                                                          (ax1, ax2), fig, x_window=realtime_plot_window,plot_ads=plot_ads)

        self.switch_dps('off')
        self.status = 'idle'

        if plot_realtime_fulldata:
            return fig,(ax1,ax2), (line1,line2), filename, acquired_dataset
        else:
            return filename
        
    def run_sequence_async(self, cmd_id=None, **kwargs):
        """Runs the sequence in a separate thread. Can be stopped by 'OhmPi.interrupt()'.
            Additional arguments are passed to run_measurement().

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """

        def func():
            self.run_sequence(**kwargs)

        self.thread = threading.Thread(target=func)
        self.thread.start()
        self.status = 'idle'

    def rs_check(self, tx_volt=12., cmd_id=None):
        """Checks contact resistances

        Parameters
        ----------
        tx_volt : float
            Voltage of the injection
        cmd_id : str, optional
            Unique command identifier
        """
        # create custom sequence where MN == AB
        # we only check the electrodes which are in the sequence (not all might be connected)
        if self.sequence is None or not self.use_mux:
            quads = np.array([[1, 2, 1, 2]], dtype=np.uint32)
        else:
            elec = np.sort(np.unique(self.sequence.flatten()))  # assumed order
            quads = np.vstack([
                elec[:-1],
                elec[1:],
                elec[:-1],
                elec[1:],
            ]).T
        if self.idps:
            quads[:, 2:] = 0  # we don't open Vmn to prevent burning the MN part
            # as it has a smaller range of accepted voltage

        # create filename to store RS
        export_path_rs = self.settings['export_path'].replace('.csv', '') \
                         + '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'

        # perform RS check
        # self.run = True
        self.status = 'running'

        if self.on_pi:
            # make sure all mux are off to start with
            self.reset_mux()

            # measure all quad of the RS sequence
            for i in range(0, quads.shape[0]):
                quad = quads[i, :]  # quadrupole
                self.switch_mux_on(quad)  # put before raising the pins (otherwise conflict i2c)
                d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=0.2, tx_volt=tx_volt, autogain=False)

                if self.idps:
                    voltage = tx_volt * 1000.  # imposed voltage on dps5005
                else:
                    voltage = d['Vmn [mV]']
                current = d['I [mA]']

                # compute resistance measured (= contact resistance)
                resist = abs(voltage / current) / 1000.
                # print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format(
                #    current, voltage, resist))
                msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, ' \
                      f'V: {voltage :>10.3f} mV, ' \
                      f'R: {resist :>10.3f} kOhm'

                self.exec_logger.debug(msg)

                # if contact resistance = 0 -> we have a short circuit!!
                if resist < 1e-5:
                    msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resist:.3f} kOhm'
                    self.exec_logger.warning(msg)

                # save data in a text file
                self.append_and_save(export_path_rs, {
                    'A': quad[0],
                    'B': quad[1],
                    'RS [kOhm]': resist,
                })

                # close mux path and put pin back to GND
                self.switch_mux_off(quad)
        else:
            pass
        self.status = 'idle'

    #
    #         # TODO if interrupted, we would need to restore the values
    #         # TODO or we offer the possibility in 'run_measurement' to have rs_check each time?

    def set_sequence(self, sequence=None, cmd_id=None):
        """Sets the sequence to acquire

        Parameters
        ----------
        sequence : list, str
            sequence of quadrupoles
        cmd_id: str, optional
            Unique command identifier
        """
        try:
            self.sequence = np.array(sequence).astype(int)
            # self.sequence = np.loadtxt(StringIO(sequence)).astype('uint32')
            status = True
        except Exception as e:
            self.exec_logger.warning(f'Unable to set sequence: {e}')
            status = False

    def stop(self, **kwargs):
        warnings.warn('This function is deprecated. Use interrupt instead.', DeprecationWarning)
        self.interrupt(**kwargs)

    def _switch_mux(self, electrode_nr, state, role):
        """Selects the right channel for the multiplexer cascade for a given electrode.
        
        Parameters
        ----------
        electrode_nr : int
            Electrode index to be switched on or off.
        state : str
            Either 'on' or 'off'.
        role : str
            Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
        """

        if not self.use_mux or not self.on_pi:
            if not self.on_pi:
                self.exec_logger.warning('Cannot reset mux while in simulation mode...')
            else:
                self.exec_logger.warning('You cannot use the multiplexer because use_mux is set to False.'
                                         ' Set use_mux to True to use the multiplexer...')
        elif self.sequence is None and not self.use_mux:
            self.exec_logger.warning('Unable to switch MUX without a sequence')
        else:
            # choose with MUX board
            tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_addresses[role])

            # find I2C address of the electrode and corresponding relay
            # considering that one MCP23017 can cover 16 electrodes
            i2c_address = 7 - (electrode_nr - 1) // 16  # quotient without rest of the division
            relay_nr = (electrode_nr-1) - ((electrode_nr-1) // 16) * 16

            if i2c_address is not None:
                # select the MCP23017 of the selected MUX board
                mcp2 = MCP23017(tca[i2c_address])
                mcp2.get_pin(relay_nr).direction = digitalio.Direction.OUTPUT

                if state == 'on':
                    mcp2.get_pin(relay_nr).value = True
                else:
                    mcp2.get_pin(relay_nr).value = False

                self.exec_logger.debug(f'Switching relay {relay_nr} '
                                       f'({str(hex(self.board_addresses[role]))}) {state} for electrode {electrode_nr}')
            else:
                self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}')

    def switch_dps(self,state='off'):
        """Switches DPS on or off.

            Parameters
            ----------
            state : str
                'on', 'off'
            """
        self.pin2 = self.mcp_board.get_pin(2) # dsp -
        self.pin2.direction = Direction.OUTPUT
        self.pin3 = self.mcp_board.get_pin(3) # dsp -
        self.pin3.direction = Direction.OUTPUT
        if state == 'on':
            self.pin2.value = True
            self.pin3.value = True
            self.exec_logger.debug(f'Switching DPS on')
            time.sleep(4)
        elif state == 'off':
            self.pin2.value = False
            self.pin3.value = False
            self.exec_logger.debug(f'Switching DPS off')


    def switch_mux_on(self, quadrupole, cmd_id=None):
        """Switches on multiplexer relays for given quadrupole.

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        quadrupole : list of 4 int
            List of 4 integers representing the electrode numbers.
        """
        roles = ['A', 'B', 'M', 'N']
        # another check to be sure A != B
        if quadrupole[0] != quadrupole[1]:
            for i in range(0, 4):
                if quadrupole[i] > 0:
                    self._switch_mux(quadrupole[i], 'on', roles[i])
        else:
            self.exec_logger.error('Not switching MUX : A == B -> short circuit risk detected!')
    
    def ohmpi_to_bert(self,fname,abmn_file,coord_file):
        """Export data to BERT format.

        Parameters
        ----------
        """
        
        abmn = np.loadtxt(abmn_file)
        nbr_abmn = len(abmn)
        data = np.loadtxt(fname, comments = '#', delimiter = ',',
                converters = None, skiprows = 1, usecols = [1,2,3,4,6,7], unpack = False,
                ndmin = 0, encoding = 'bytes', max_rows = None)
        coord = np.loadtxt(coord_file)
        with open(fname +'data.dat','w') as rho_data:
            rho_data.write(str(len(coord)))
            rho_data.write('\n')
            rho_data.write('# x y z')
            rho_data.write('\n')
            np.savetxt(rho_data,coord,delimiter=' ',fmt='%1.3f')
            rho_data.write(str(len(data)))
            rho_data.write('\n')
            rho_data.write('# a b m n u i ')
            rho_data.write('\n')
            np.savetxt(rho_data,data, fmt='%i %i %i %i %1.3f %1.3f')  
        
        

    def switch_mux_off(self, quadrupole, cmd_id=None):
        """Switches off multiplexer relays for given quadrupole.

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        quadrupole : list of 4 int
            List of 4 integers representing the electrode numbers.
        """
        roles = ['A', 'B', 'M', 'N']
        for i in range(0, 4):
            if quadrupole[i] > 0:
                self._switch_mux(quadrupole[i], 'off', roles[i])

    def test_led(self):
        """Interactive method to test the multiplexer."""
        self.mcp_board = MCP23008(self.i2c, address=self.mcp_board_address)
        self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run
        self.pin4.direction = Direction.OUTPUT
        self.pin5 = self.mcp_board.get_pin(5) # measurement_run
        self.pin5.direction = Direction.OUTPUT
        self.pin6 = self.mcp_board.get_pin(6) # stack_run
        self.pin6.direction = Direction.OUTPUT
        self.pin7 = self.mcp_board.get_pin(7) # battery_off
        self.pin7.direction = Direction.OUTPUT
        print('led on test')
        for i in range(30):
            print('Led on')
            self.exec_logger.debug(f'Led on')
            self.pin4.value = True
            self.pin5.value = True
            self.pin6.value = True
            self.pin7.value = True
            time.sleep(0.5)
            print('Led off')
            self.exec_logger.debug(f'Led off')
            self.pin4.value = False
            self.pin5.value = False
            self.pin6.value = False
            self.pin7.value = False
            time.sleep(0.5)
            

    def test_mux(self, activation_time=1.0, address=0x70):
        """Interactive method to test the multiplexer.

        Parameters
        ----------
        activation_time : float, optional
            Time in seconds during which the relays are activated.
        address : hex, optional
            Address of the multiplexer board to test (e.g. 0x70, 0x71, ...).
        """
        self.use_mux = True
        self.reset_mux()

        # choose with MUX board
        tca = adafruit_tca9548a.TCA9548A(self.i2c, address)

        # ask use some details on how to proceed
        a = input('If you want try 1 channel choose 1, if you want try all channels choose 2!')
        if a == '1':
            print('run channel by channel test')
            electrode = int(input('Choose your electrode number (integer):'))
            electrodes = [electrode]
        elif a == '2':
            electrodes = range(1, 65)
        else:
            print('Wrong choice !')
            return

            # run the test
        for electrode_nr in electrodes:
            # find I2C address of the electrode and corresponding relay
            # considering that one MCP23017 can cover 16 electrodes
            i2c_address = 7 - (electrode_nr - 1) // 16  # quotient without rest of the division
            relay_nr = (electrode_nr-1) - ((electrode_nr-1) // 16) * 16


            if i2c_address is not None:
                # select the MCP23017 of the selected MUX board
                mcp2 = MCP23017(tca[i2c_address])
                mcp2.get_pin(relay_nr).direction = digitalio.Direction.OUTPUT

                # activate relay for given time    
                mcp2.get_pin(relay_nr).value = True
                print('electrode:', electrode_nr, ' activated...', end='', flush=True)
                time.sleep(activation_time)
                mcp2.get_pin(relay_nr).value = False
                print(' deactivated')
                time.sleep(activation_time)
        print('Test finished.')

    def reset_mux(self, cmd_id=None):
        """Switches off all multiplexer relays.

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """
        if self.on_pi and self.use_mux:
            roles = ['A', 'B', 'M', 'N']
            for i in range(0, 4):
                for j in range(1, self.max_elec + 1):
                    self._switch_mux(j, 'off', roles[i])
            self.exec_logger.debug('All MUX switched off.')
        elif not self.on_pi:
            self.exec_logger.warning('Cannot reset mux while in simulation mode...')
        else:
            self.exec_logger.warning('You cannot use the multiplexer because use_mux is set to False.'
                                     ' Set use_mux to True to use the multiplexer...')

    def _update_acquisition_settings(self, config):
        warnings.warn('This function is deprecated, use update_settings() instead.', DeprecationWarning)
        self.update_settings(settings=config)

    def update_settings(self, settings: str, cmd_id=None):
        """Updates acquisition settings from a json file or dictionary.
        Parameters can be:
            - nb_electrodes (number of electrode used, if 4, no MUX needed)
            - injection_duration (in seconds)
            - nb_meas (total number of times the sequence will be run)
            - sequence_delay (delay in second between each sequence run)
            - nb_stack (number of stack for each quadrupole measurement)
            - export_path (path where to export the data, timestamp will be added to filename)

        Parameters
        ----------
        settings : str, dict
            Path to the .json settings file or dictionary of settings.
        cmd_id : str, optional
            Unique command identifier
        """
        status = False
        if settings is not None:
            try:
                if isinstance(settings, dict):
                    self.settings.update(settings)
                else:
                    with open(settings) as json_file:
                        dic = json.load(json_file)
                    self.settings.update(dic)
                self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings))
                status = True
            except Exception as e:  # noqa
                self.exec_logger.warning('Unable to update settings.')
                status = False
        else:
            self.exec_logger.warning('Settings are missing...')
        return status

    # Properties
    @property
    def sequence(self):
        """Gets sequence"""
        if self._sequence is not None:
            assert isinstance(self._sequence, np.ndarray)
        return self._sequence

    @sequence.setter
    def sequence(self, sequence):
        """Sets sequence"""
        if sequence is not None:
            assert isinstance(sequence, np.ndarray)
            self.use_mux = True
        else:
            self.use_mux = False
        self._sequence = sequence


VERSION = '2.1.5'

print(colored(r' ________________________________' + '\n' +
              r'|  _  | | | ||  \/  || ___ \_   _|' + '\n' +
              r'| | | | |_| || .  . || |_/ / | |' + '\n' +
              r'| | | |  _  || |\/| ||  __/  | |' + '\n' +
              r'\ \_/ / | | || |  | || |    _| |_' + '\n' +
              r' \___/\_| |_/\_|  |_/\_|    \___/ ', 'red'))
print('Version:', VERSION)
platform, on_pi = get_platform()

if on_pi:
    print(colored(f'\u2611 Running on {platform} platform', 'green'))
    # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
    #       and emit a warning otherwise
    if not arm64_imports:
        print(colored(f'Warning: Required packages are missing.\n'
                      f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow'))
else:
    print(colored(f'\u26A0 Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))

current_time = datetime.now()
print(f'local date and time : {current_time.strftime("%Y-%m-%d %H:%M:%S")}')

# for testing
if __name__ == "__main__":
    ohmpi = OhmPi(settings=OHMPI_CONFIG['settings'])
    if ohmpi.controller is not None:
        ohmpi.controller.loop_forever()