from hwTest import Alimentation, Current, Voltage, Multiplexer # -*- coding: utf-8 -*- """ created on January 6, 2020. Updates dec 2022. Hardware: Licensed under CERN-OHL-S v2 or any later version Software: Licensed under the GNU General Public License v3.0 Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR) Olivier KAUFMANN (UMONS), Arnaud WATLET (UMONS) and Guillaume BLANCHY (FNRS/ULiege). """ import os from utils import get_platform import json import warnings from copy import deepcopy import numpy as np import csv import time import shutil from datetime import datetime from termcolor import colored import threading from logging_setup import setup_loggers from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG from logging import DEBUG # finish import (done only when class is instantiated as some libs are only available on arm64 platform) try: from gpiozero import CPUTemperature # noqa arm64_imports = True except ImportError as error: if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG: print(colored(f'Import error: {error}', 'yellow')) arm64_imports = False except Exception as error: print(colored(f'Unexpected error: {error}', 'red')) arm64_imports = None class OhmPi(object): """ OhmPi class. """ def __init__(self, settings=None, sequence=None, use_mux=False, mqtt=True, onpi=None, idps=False): """Constructs the ohmpi object Parameters ---------- settings: sequence: use_mux: if True use the multiplexor to select active electrodes mqtt: bool, defaut: True if True publish on mqtt topics while logging, otherwise use other loggers only onpi: bool,None default: None if None, the platform on which the class is instantiated is determined to set on_pi to either True or False. if False the behaviour of an ohmpi will be partially emulated and return random data. idps: if true uses the DPS """ if onpi is None: _, onpi = get_platform() self._sequence = sequence self.nb_samples = 0 self.use_mux = use_mux self.on_pi = onpi # True if run from the RaspberryPi with the hardware, otherwise False for random data self.status = 'idle' # either running or idle self.thread = None # contains the handle for the thread taking the measurement # set loggers config_exec_logger, _, config_data_logger, _, _, msg = setup_loggers(mqtt=mqtt) # TODO: add SOH self.data_logger = config_data_logger self.exec_logger = config_exec_logger self.soh_logger = None # TODO: Implement the SOH logger print(msg) # read in hardware parameters (config.py) self._read_hardware_config() # TODO should go to hw.py # default acquisition settings self.settings = { 'injection_duration': 0.2, 'nb_meas': 1, 'sequence_delay': 1, 'nb_stack': 1, 'export_path': 'data/measurement.csv' } # read in acquisition settings if settings is not None: self.update_settings(settings) self.exec_logger.debug('Initialized with settings:' + str(self.settings)) # read quadrupole sequence if sequence is not None: self.load_sequence(sequence) self.idps = idps # flag to use dps for injection or not # connect to components on the OhmPi board if self.on_pi: # initialize hardware self.alim = Alimentation() self.voltage = Voltage() self.current = Current() self.mux = Multiplexer() # set controller self.mqtt = mqtt self.cmd_id = None if self.mqtt: import paho.mqtt.client as mqtt_client self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" f" on {MQTT_CONTROL_CONFIG['hostname']} broker") def connect_mqtt() -> mqtt_client: def on_connect(mqttclient, userdata, flags, rc): if rc == 0: self.exec_logger.debug(f"Successfully connected to control broker:" f" {MQTT_CONTROL_CONFIG['hostname']}") else: self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}') client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False) client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'), MQTT_CONTROL_CONFIG['auth']['password']) client.on_connect = on_connect client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port']) return client try: self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}") self.controller = connect_mqtt() except Exception as e: self.exec_logger.debug(f'Unable to connect control broker: {e}') self.controller = None if self.controller is not None: self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}") try: self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos']) msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \ f" on {MQTT_CONTROL_CONFIG['hostname']} broker" self.exec_logger.debug(msg) print(colored(f'\u2611 {msg}', 'blue')) except Exception as e: self.exec_logger.warning(f'Unable to subscribe to control topic : {e}') self.controller = None publisher_config = MQTT_CONTROL_CONFIG.copy() publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic'] publisher_config.pop('ctrl_topic') def on_message(client, userdata, message): command = message.payload.decode('utf-8') self.exec_logger.debug(f'Received command {command}') self._process_commands(command) self.controller.on_message = on_message else: self.controller = None self.exec_logger.warning('No connection to control broker.' ' Use python/ipython to interact with OhmPi object...') @staticmethod def append_and_save(filename: str, last_measurement: dict, cmd_id=None): """Appends and saves the last measurement dict. Parameters ---------- filename : str filename to save the last measurement dataframe last_measurement : dict Last measurement taken in the form of a python dictionary cmd_id : str, optional Unique command identifier """ last_measurement = deepcopy(last_measurement) if 'fulldata' in last_measurement: d = last_measurement['fulldata'] n = d.shape[0] if n > 1: idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0])) udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1])) tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2])) last_measurement.update(idic) last_measurement.update(udic) last_measurement.update(tdic) last_measurement.pop('fulldata') if os.path.isfile(filename): # Load data file and append data to it with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writerow(last_measurement) # last_measurement.to_csv(f, header=False) else: # create data file and add headers with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writeheader() w.writerow(last_measurement) def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5): """Estimates best Tx voltage based on different strategies. At first a half-cycle is made for a short duration with a fixed known voltage. This gives us Iab and Rab. We also measure Vmn. A constant c = vmn/iab is computed (only depends on geometric factor and ground resistivity, that doesn't change during a quadrupole). Then depending on the strategy, we compute which vab to inject to reach the minimum/maximum Iab current or min/max Vmn. Parameters ---------- best_tx_injtime : float, optional Time in milliseconds for the half-cycle used to compute Rab. strategy : str, optional Either: - vmin : compute Vab to reach a minimum Iab and Vmn - vmax : compute Vab to reach a maximum Iab and Vmn - constant : apply given Vab tx_volt : float, optional Voltage apply to try to guess the best voltage. 5 V applied by default. If strategy "constant" is chosen, constant voltage to applied is "tx_volt". Returns ------- vab : float Proposed Vab according to the given strategy. """ # hardware limits voltage_min = self.voltage.vmin # V voltage_max = self.voltage.vmax current_min = self.current.imin # A current_max = self.current.imax tx_max = 40. # volt # check of V volt = tx_volt if volt > tx_max: self.exec_logger.warning('Sorry, cannot inject more than 40 V, set it back to 5 V') volt = 5. # make sure we are not injecting self.alim.stop_injection() # select a polarity to start with self.alim.set_polarity(True) # set voltage for test self.alim.turn_on() self.alim.set_tx_voltage(volt) time.sleep(best_tx_injtime) # inject for given tx time self.alim.start_injection() # autogain: set best gain self.current.set_best_gain() self.voltage.set_best_gain() # we measure the voltage on both A0 and A2 to guess the polarity values = self.read_values(duration=0.1) self.alim.stop_injection() iab = values[-1, 1] vmn = values[-1, 2] # compute constant c = vmn / iab Rab = (volt * 1000.) / iab # noqa self.exec_logger.debug(f'Rab = {Rab:.2f} Ohms') # implement different strategies if strategy == 'vmax': vmn_max = c * current_max if voltage_max > vmn_max > voltage_min: vab = current_max * Rab self.exec_logger.debug('target max current') else: iab = voltage_max / c vab = iab * Rab self.exec_logger.debug('target max voltage') if vab > 25.: vab = 25. vab = vab * 0.9 elif strategy == 'vmin': vmn_min = c * current_min if voltage_min < vmn_min < voltage_max: vab = current_min * Rab self.exec_logger.debug('target min current') else: iab = voltage_min / c vab = iab * Rab self.exec_logger.debug('target min voltage') if vab < 1.: vab = 1. vab = vab * 1.1 elif strategy == 'constant': vab = volt else: vab = 5 return vab def get_data(self, survey_names=None, cmd_id=None): """Get available data. Parameters ---------- survey_names : list of str, optional List of filenames already available from the html interface. So their content won't be returned again. Only files not in the list will be read. cmd_id : str, optional Unique command identifier """ # get all .csv file in data folder if survey_names is None: survey_names = [] fnames = [fname for fname in os.listdir('data/') if fname[-4:] == '.csv'] ddic = {} if cmd_id is None: cmd_id = 'unknown' for fname in fnames: if ((fname != 'readme.txt') and ('_rs' not in fname) and (fname.replace('.csv', '') not in survey_names)): try: data = np.loadtxt('data/' + fname, delimiter=',', skiprows=1, usecols=(1, 2, 3, 4, 8)) data = data[None, :] if len(data.shape) == 1 else data ddic[fname.replace('.csv', '')] = { 'a': data[:, 0].astype(int).tolist(), 'b': data[:, 1].astype(int).tolist(), 'm': data[:, 2].astype(int).tolist(), 'n': data[:, 3].astype(int).tolist(), 'rho': data[:, 4].tolist(), } except Exception as e: print(fname, ':', e) rdic = {'cmd_id': cmd_id, 'data': ddic} self.data_logger.info(json.dumps(rdic)) return ddic def interrupt(self, cmd_id=None): """Interrupts the acquisition when launched in async mode. Parameters ---------- cmd_id : str, optional Unique command identifier """ self.status = 'stopping' if self.thread is not None: self.thread.join() self.exec_logger.debug('Interrupted sequence acquisition...') else: self.exec_logger.debug('No sequence measurement thread to interrupt.') self.exec_logger.debug(f'Status: {self.status}') def load_sequence(self, filename: str, cmd_id=None): """Reads quadrupole sequence from file. Parameters ---------- filename : str Path of the .csv or .txt file with A, B, M and N electrodes. Electrode index start at 1. cmd_id : str, optional Unique command identifier Returns ------- sequence : numpy.array Array of shape (number quadrupoles * 4). """ self.exec_logger.debug(f'Loading sequence {filename}') try: sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32) # load quadrupole file self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.') self.set_sequence(sequence) except Exception as e: self.exec_logger.debug('ERROR in load_sequence(): ' + str(e)) if sequence is not None: self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.') else: self.exec_logger.warning(f'Unable to load sequence {filename}') def set_sequence(self, sequence): """Set a sequence of quadrupoles. Parameters ---------- sequence : list of list or np.array 2D array with 1 row per quadrupole. """ # locate lines where the electrode index exceeds the maximum number of electrodes test_index_elec = np.array(np.where(sequence > self.max_elec)) # reshape in case we have a 1D array (=1 quadrupole) if len(sequence.shape) == 1: sequence = sequence[None, :] # test for elec A == B test_same_elec = np.where(sequence[:, 0] == sequence[:, 1])[0] ok = True # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2) if test_index_elec.size != 0: for i in range(len(test_index_elec[0, :])): ok = False self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} ' f'exceeds the maximum number of electrodes') # sys.exit(1) sequence = None if len(test_same_elec) != 0: for i in range(len(test_same_elec)): ok = False self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}') # sys.exit(1) sequence = None # set sequence attribute if ok: self.sequence = sequence else: self.exec_logger.error('Unable to set sequence. Fix sequence first.') def _process_commands(self, message: str): """Processes commands received from the controller(s) Parameters ---------- message : str message containing a command and arguments or keywords and arguments """ status = False cmd_id = '?' try: decoded_message = json.loads(message) self.exec_logger.debug(f'Decoded message {decoded_message}') cmd_id = decoded_message.pop('cmd_id', None) cmd = decoded_message.pop('cmd', None) kwargs = decoded_message.pop('kwargs', None) self.exec_logger.debug(f"Calling method {cmd}({str(kwargs) if kwargs is not None else ''})") if cmd_id is None: self.exec_logger.warning('You should use a unique identifier for cmd_id') if cmd is not None: try: if kwargs is None: output = getattr(self, cmd)() else: output = getattr(self, cmd)(**kwargs) status = True except Exception as e: self.exec_logger.error( f"Unable to execute {cmd}({str(kwargs) if kwargs is not None else ''}): {e}") status = False except Exception as e: self.exec_logger.warning(f'Unable to decode command {message}: {e}') status = False finally: reply = {'cmd_id': cmd_id, 'status': status} reply = json.dumps(reply) self.exec_logger.debug(f'Execution report: {reply}') def quit(self, cmd_id=None): """Quits OhmPi Parameters ---------- cmd_id : str, optional Unique command identifier """ self.exec_logger.debug(f'Quitting ohmpi.py following command {cmd_id}') exit() def _read_hardware_config(self): """Reads hardware configuration from config.py """ self.exec_logger.debug('Getting hardware config') self.id = OHMPI_CONFIG['id'] # ID of the OhmPi self.Imax = OHMPI_CONFIG['Imax'] # maximum current self.exec_logger.debug(f'The maximum current cannot be higher than {self.Imax} mA') self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V self.nb_samples = OHMPI_CONFIG['nb_samples'] # number of samples measured for each stack self.version = OHMPI_CONFIG['version'] # hardware version self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes self.board_version = OHMPI_CONFIG['board_version'] self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}') def remove_data(self, cmd_id=None): """Remove all data in the data folder Parameters ---------- cmd_id : str, optional Unique command identifier """ self.exec_logger.debug(f'Removing all data following command {cmd_id}') shutil.rmtree('data') os.mkdir('data') def restart(self, cmd_id=None): """Restarts the Raspberry Pi Parameters ---------- cmd_id : str, optional Unique command identifier """ if self.on_pi: self.exec_logger.info(f'Restarting pi following command {cmd_id}...') os.system('reboot') else: self.exec_logger.warning('Not on Raspberry Pi, skipping reboot...') def set_best_gain(self): """Set best gain.""" self.current.set_best_gain() gain0 = self.voltage.get_best_gain(channel=0) gain2 = self.voltage.get_best_gain(channel=2) self.voltage.set_gain(np.min([gain0, gain2])) def read_values(self, duration=0.2, sampling=0.01): """Read voltage during a given time for current and voltage ADS. Parameters ---------- duration : int, optional Time in seconds to monitor the voltage. sampling : int, optional Time between two samples in seconds. Returns ------- meas : numpy.array Array with first column time in ms from start, second column, current in mA, then voltage in mV from the different channels. """ # compute maximum number of samples possible # we probably harvest less samples but like this # we can already allocated the array and that makes # the collection faster nsamples = int((int(duration * 1000) // sampling) + 1) # measurement of current i and voltage u during injection nchannel = len(self.voltage.read_all()) meas = np.zeros((nsamples, 2 + nchannel)) * np.nan start_time = time.time() # stating measurement time elapsed = 0 for i in range(0, nsamples): # reading current value on ADS channels elapsed = time.time() - start_time # real injection time (s) if elapsed >= (duration): break meas[i, 0] = elapsed meas[i, 1] = self.current.read() meas[i, 2:] = self.voltage.read_all() time.sleep(sampling) return meas[:i-1, :] def run_measurement(self, quad=[0, 0, 0, 0], nb_stack=None, injection_duration=None, autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1, duty=1, cmd_id=None): """Measures on a quadrupole and returns transfer resistance. Parameters ---------- quad : iterable (list of int) Quadrupole to measure, just for labelling. Only switch_mux_on/off really creates the route to the electrodes. nb_stack : int, optional Number of stacks. A stacl is considered two half-cycles (one positive, one negative). injection_duration : int, optional Injection time in seconds. autogain : bool, optional If True, will adapt the gain of the ADS1115 to maximize the resolution of the reading. strategy : str, optional (V3.0 only) If we search for best voltage (tx_volt == 0), we can choose different strategy: - vmin: find the lowest voltage that gives us a signal - vmax: find the highest voltage that stays in the range For a constant value, just set the tx_volt. tx_volt : float, optional (V3.0 only) If specified, voltage will be imposed. If 0, we will look for the best voltage. If the best Tx cannot be found, no measurement will be taken and values will be NaN. best_tx_injtime : float, optional (V3.0 only) Injection time in seconds used for finding the best voltage. duty : float, optional Proportion of time spent on injection vs no injection time. cmd_id : str, optional Command ID. """ self.exec_logger.debug('Starting measurement') if nb_stack is None: nb_stack = self.settings['nb_stack'] if injection_duration is None: injection_duration = self.settings['injection_duration'] tx_volt = float(tx_volt) # let's define the pin again as if we run through measure() # as it's run in another thread, it doesn't consider these # and this can lead to short circuit! self.alim = Alimentation() # TODO carefully test that self.alim.stop_injection() # get best voltage to inject AND polarity if self.idps: tx_volt, polarity = self._compute_tx_volt( best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt) self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V') # first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous) self.current.set_gain(2/3) self.voltage.set_gain(2/3) # turn on the power supply if self.alim.on == False: self.alim.turn_on() self.alim.set_tx_voltage(tx_volt) time.sleep(0.05) # let it time to reach tx_volt if tx_volt > 0: # we found a Vab in the range so we measure # find best gain during injection if autogain: self.alim.start_injection() time.sleep(injection_duration) self.set_best_gain() self.alim.stop_injection() # make sure we are not injecting self.alim.stop_injection() # full data for waveform fulldata = [] # we sample every 10 ms (as using AnalogIn for both current # and voltage takes about 7 ms). When we go over the injection # duration, we break the loop and truncate the meas arrays # only the last values in meas will be taken into account start_delay = time.time() injtimes = np.zeros(nb_stack * 2) for n in range(0, nb_stack * 2): # for each half-cycles # current injection polarity if (n % 2) == 0: self.alim.set_polarity(True) else: self.alim.set_polarity(False) self.alim.start_injection() # reading voltages and currents elapsed = time.time() - start_delay values = self.read_values(duration=injection_duration) injtimes[n] = values[-1, 0] values[:, 0] += elapsed fulldata.append(values) # stop current injection self.alim.stop_injection() # waiting time (no injection) before next half-cycle if duty < 1: duration = injection_duration * (1 - duty) elapsed = time.time() - start_delay values = self.read_values(duration=duration) values[:, 0] += elapsed fulldata.append(values) else: fulldata.append(np.array([[], [], [], []]).T) # TODO get battery voltage and warn if battery is running low # TODO send a message on SOH stating the battery level # let's do some calculation (out of the stacking loop) stacks = np.zeros((len(fulldata) // 2, fulldata[0].shape[1]-1)) # define number of sample to average for the injection half-cycle n2avg = int(fulldata[0].shape[0] // 3) # compute average for the injection half-cycle for n, meas in enumerate(fulldata[::2]): stacks[n, :] = np.mean(meas[-n2avg:, 1:], axis=0) # identify which of U0 or U2 is on top a = 1 b = 0 if stacks[0, 1] > stacks[0, 2]: a = 0 b = 1 # compute average vmn and i iab = np.mean(stacks[:, 1]) vmn = np.mean(stacks[a::2, 1] + stacks[b::2, 2]) # self-potential estimated during on-time spon = np.mean(stacks[a::2, 1] - stacks[b::2, 2]) # remove the average sp computed on injection half-cycle vmn = vmn - spon # compute average self potential between injection half-cycle if duty < 1: spoff = 0 n2avg = int(fulldata[0].shape[0] // 3) for n, meas in enumerate(fulldata[1::2]): spoff += np.mean(meas[-n2avg:, 2]) spoff = spoff / len(fulldata) * 2 else: iab = np.nan vmn = np.nan spon = np.nan fulldata = None # set a low voltage for safety self.alim.set_tx_voltage(12) # reshape full data to an array of good size # we need an array of regular size to save in the csv if tx_volt > 0: # TODO what if have different array size? for a in fulldata: print(a.shape) fulldata = np.vstack(fulldata) # we create a big enough array given nb_samples, number of # half-cycles (1 stack = 2 half-cycles), and twice as we # measure decay as well nsamples = int((int(injection_duration * 1000) / duty) // 0.01 + 1) a = np.zeros((nb_stack * nsamples * 2, fulldata.shape[1])) * np.nan a[:fulldata.shape[0], :] = fulldata fulldata = a # create a dictionary and compute averaged values from all stacks d = { "time": datetime.now().isoformat(), "A": quad[0], "B": quad[1], "M": quad[2], "N": quad[3], "injtime [ms]": np.mean(injtimes), "Vmn [mV]": vmn, "I [mA]": iab, "R [ohm]": vmn/iab, "Ps [mV]": spon, "nbStack": nb_stack, "tmp [degC]": CPUTemperature().temperature if arm64_imports else -10, "Nb samples [-]": n2avg, "stacks": stacks, "fulldata": fulldata, } # to the data logger dd = d.copy() dd.pop('fulldata') # too much for logger dd.update({'A': str(dd['A'])}) dd.update({'B': str(dd['B'])}) dd.update({'M': str(dd['M'])}) dd.update({'N': str(dd['N'])}) # round float to 2 decimal for key in dd.keys(): if isinstance(dd[key], float): dd[key] = np.round(dd[key], 3) dd['cmd_id'] = str(cmd_id) self.data_logger.info(dd) return d def run_sequence(self, cmd_id=None, **kwargs): """Runs sequence synchronously (=blocking on main thread). Additional arguments are passed to run_measurement(). Parameters ---------- cmd_id : str, optional Unique command identifier. kwargs : optional Optional keyword arguments passed to run_measurement(). See help(OhmPi.run_measurement). """ self.status = 'running' self.exec_logger.debug(f'Status: {self.status}') self.exec_logger.debug(f'Measuring sequence: {self.sequence}') # create filename with timestamp filename = self.settings["export_path"].replace('.csv', f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv') self.exec_logger.debug(f'Saving to {filename}') # make sure all multiplexer are off self.mux.reset() # measure all quadrupole of the sequence if self.sequence is None: seq = np.array([[0, 0, 0, 0]]) else: seq = self.sequence.copy() for i in range(0, seq.shape[0]): quad = seq[i, :] if self.status == 'stopping': break # call the switch_mux function to switch to the right electrodes self.switch_mux_on(quad) # run a measurement acquired_data = self.run_measurement(quad, **kwargs) self.data_logger.info(acquired_data) # switch mux off self.switch_mux_off(quad) # add command_id in dataset acquired_data.update({'cmd_id': cmd_id}) # log data to the data logger # self.data_logger.info(f'{acquired_data}') # save data and print in a text file self.append_and_save(filename, acquired_data) self.exec_logger.debug(f'quadrupole {i + 1:d}/{seq.shape[0]:d}') self.status = 'idle' def run_sequence_async(self, cmd_id=None, **kwargs): """Runs the sequence in a separate thread. Can be stopped by 'OhmPi.interrupt()'. Additional arguments are passed to run_measurement(). Parameters ---------- cmd_id : str, optional Unique command identifier """ def func(): self.run_sequence(**kwargs) self.thread = threading.Thread(target=func) self.thread.start() self.status = 'idle' def run_multiple_sequences(self, sequence_delay=None, nb_meas=None, cmd_id=None, **kwargs): """Runs multiple sequences in a separate thread for monitoring mode. Can be stopped by 'OhmPi.interrupt()'. Additional arguments are passed to run_measurement(). Parameters ---------- cmd_id : str, optional Unique command identifier sequence_delay : int, optional Number of seconds at which the sequence must be started from each others. nb_meas : int, optional Number of time the sequence must be repeated. kwargs : dict, optional See help(k.run_measurement) for more info. """ # self.run = True if sequence_delay is None: sequence_delay = self.settings['sequence_delay'] sequence_delay = int(sequence_delay) if nb_meas is None: nb_meas = self.settings['nb_meas'] self.status = 'running' self.exec_logger.debug(f'Status: {self.status}') self.exec_logger.debug(f'Measuring sequence: {self.sequence}') def func(): for g in range(0, nb_meas): # for time-lapse monitoring if self.status == 'stopping': self.exec_logger.warning('Data acquisition interrupted') break t0 = time.time() self.run_sequence(**kwargs) # sleeping time between sequence dt = sequence_delay - (time.time() - t0) if dt < 0: dt = 0 if nb_meas > 1: time.sleep(dt) # waiting for next measurement (time-lapse) self.status = 'idle' self.thread = threading.Thread(target=func) self.thread.start() def _quad2qdic(self, quad): """Convert a quadrupole to a more flexible qdic of format {'A': [1], 'B': [2], 'M': [3], 'N': [4]}. This format enable to inject at several electrodes and is more flexible for multichannelling (we can add M1, N1, ...). Parameters ---------- quad : list of int, List of quadrupoles. Electrodes equal to 0 are ignored. Returns ------- Dictionnary in the form: {role: [list of electrodes]}. """ return dict(zip(['A', 'B', 'M', 'N'], [[a] for a in quad if a > 0])) def switch_mux_on(self, quad): """"Switch quadrupoles on. Parameters ---------- quad : list of int, List of quadrupoles. Electrodes equal to 0 are ignored. """ qdic = self._quad2qdic(quad) self.mux.switch(qdic, 'on') def switch_mux_off(self, quad): """Switch quadrupoles off. Parameters ---------- quad : list of int, List of quadrupoles. Electrodes equal to 0 are ignored. """ qdic = self._quad2qdic(quad) self.mux.switch(qdic, 'off') def reset_mux(self): """Reset the mux, make sure all relays are off. """ self.mux.reset() def rs_check(self, tx_volt=12., cmd_id=None): """Checks contact resistances. Parameters ---------- tx_volt : float, optional Voltage of the injection. cmd_id : str, optional Unique command identifier. """ # create custom sequence where MN == AB # we only check the electrodes which are in the sequence (not all might be connected) if self.sequence is None: quads = np.array([[1, 2, 0, 0]], dtype=np.uint32) else: elec = np.sort(np.unique(self.sequence.flatten())) # assumed order quads = np.vstack([ elec[:-1], elec[1:], np.zeros(len(elec)-1), np.zeros(len(elec)-1) ]).T # create filename to store RS export_path_rs = self.settings['export_path'].replace('.csv', '') \ + '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv' # perform RS check self.status = 'running' # make sure all mux are off to start with self.mux.reset() # turn on alim self.alim.turn_on() self.alim.set_tx_voltage(tx_volt) # measure all quad of the RS sequence for i in range(0, quads.shape[0]): quad = quads[i, :] # quadrupole self.switch_mux_on(quad) # put before raising the pins (otherwise conflict i2c) d = self.run_measurement( quad=quad, nb_stack=1, injection_duration=0.2, tx_volt=tx_volt, autogain=False) self.switch_mux_off(quad) voltage = d['Tx [V]'] current = d['I [mA]'] / 1000. # compute resistance measured (= contact resistance) resist = abs(voltage / current) / 1000. # print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format( # current, voltage, resist)) msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, ' \ f'V: {voltage :>10.3f} mV, ' \ f'R: {resist :>10.3f} kOhm' self.exec_logger.debug(msg) # if contact resistance = 0 -> we have a short circuit!! if resist < 1e-5: msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resist:.3f} kOhm' self.exec_logger.warning(msg) # save data in a text file self.append_and_save(export_path_rs, { 'A': quad[0], 'B': quad[1], 'RS [kOhm]': resist, }) self.alim.turn_off() self.status = 'idle' def update_settings(self, settings: str, cmd_id=None): """Updates acquisition settings from a json file or dictionary. Parameters can be: - nb_electrodes (number of electrode used, if 4, no MUX needed) - injection_duration (in seconds) - nb_meas (total number of times the sequence will be run) - sequence_delay (delay in second between each sequence run) - nb_stack (number of stack for each quadrupole measurement) - export_path (path where to export the data, timestamp will be added to filename) Parameters ---------- settings : str, dict Path to the .json settings file or dictionary of settings. cmd_id : str, optional Unique command identifier """ status = False if settings is not None: try: if isinstance(settings, dict): self.settings.update(settings) else: with open(settings) as json_file: dic = json.load(json_file) self.settings.update(dic) self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings)) status = True except Exception as e: # noqa self.exec_logger.warning('Unable to update settings.') status = False else: self.exec_logger.warning('Settings are missing...') return status def stop(self, **kwargs): warnings.warn('This function is deprecated. Use interrupt instead.', DeprecationWarning) self.interrupt(**kwargs) def _update_acquisition_settings(self, config): warnings.warn('This function is deprecated, use update_settings() instead.', DeprecationWarning) self.update_settings(settings=config) # Properties @property def sequence(self): """Gets sequence""" if self._sequence is not None: assert isinstance(self._sequence, np.ndarray) return self._sequence # TODO not sure if the below is still needed now we have a # method set_sequence() @sequence.setter def sequence(self, sequence): """Sets sequence""" if sequence is not None: assert isinstance(sequence, np.ndarray) self.use_mux = True else: self.use_mux = False self._sequence = sequence VERSION = '3.0.0' print(colored(r' ________________________________' + '\n' + r'| _ | | | || \/ || ___ \_ _|' + '\n' + r'| | | | |_| || . . || |_/ / | |' + '\n' + r'| | | | _ || |\/| || __/ | |' + '\n' + r'\ \_/ / | | || | | || | _| |_' + '\n' + r' \___/\_| |_/\_| |_/\_| \___/ ', 'red')) print('Version:', VERSION) platform, on_pi = get_platform() if on_pi: print(colored(f'\u2611 Running on {platform} platform', 'green')) # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...) # and emit a warning otherwise if not arm64_imports: print(colored(f'Warning: Required packages are missing.\n' f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow')) else: print(colored(f'\u26A0 Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow')) current_time = datetime.now() print(f'local date and time : {current_time.strftime("%Y-%m-%d %H:%M:%S")}') # for testing if __name__ == "__main__": ohmpi = OhmPi(settings=OHMPI_CONFIG['settings']) if ohmpi.controller is not None: ohmpi.controller.loop_forever()