# -*- coding: utf-8 -*- """ created on January 6, 2020. Updates May 2022, Oct 2022. Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR) Olivier KAUFMANN (UMONS), Arnaud WATELET (UMONS) and Guillaume BLANCHY (FNRS/ULiege). """ import os from utils import get_platform import json import warnings from copy import deepcopy import numpy as np import csv import time import shutil from datetime import datetime from termcolor import colored import threading from logging_setup import setup_loggers from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG from logging import DEBUG # finish import (done only when class is instantiated as some libs are only available on arm64 platform) try: import board # noqa import busio # noqa import adafruit_tca9548a # noqa import adafruit_ads1x15.ads1115 as ads # noqa from adafruit_ads1x15.analog_in import AnalogIn # noqa from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa from adafruit_mcp230xx.mcp23017 import MCP23017 # noqa import digitalio # noqa from digitalio import Direction # noqa from gpiozero import CPUTemperature # noqa import minimalmodbus # noqa arm64_imports = True except ImportError as error: if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG: print(colored(f'Import error: {error}', 'yellow')) arm64_imports = False except Exception as error: print(colored(f'Unexpected error: {error}', 'red')) arm64_imports = None exit() class OhmPi(object): """ OhmPi class. """ def __init__(self, settings=None, sequence=None, use_mux=False, mqtt=True, onpi=None, idps=False): """Constructs the ohmpi object Parameters ---------- settings: sequence: use_mux: if True use the multiplexor to select active electrodes mqtt: bool, defaut: True if True publish on mqtt topics while logging, otherwise use other loggers only onpi: bool,None default: None if None, the platform on which the class is instantiated is determined to set on_pi to either True or False. if False the behaviour of an ohmpi will be partially emulated and return random data. idps: if true uses the DPS """ if onpi is None: _, onpi = get_platform() self._sequence = sequence self.nb_samples = 0 self.use_mux = use_mux self.on_pi = onpi # True if run from the RaspberryPi with the hardware, otherwise False for random data self.status = 'idle' # either running or idle self.thread = None # contains the handle for the thread taking the measurement # set loggers config_exec_logger, _, config_data_logger, _, _, msg = setup_loggers(mqtt=mqtt) # TODO: add SOH self.data_logger = config_data_logger self.exec_logger = config_exec_logger self.soh_logger = None # TODO: Implement the SOH logger print(msg) # read in hardware parameters (config.py) self._read_hardware_config() # default acquisition settings self.settings = { 'injection_duration': 0.2, 'nb_meas': 1, 'sequence_delay': 1, 'nb_stack': 1, 'export_path': 'data/measurement.csv' } # read in acquisition settings if settings is not None: self.update_settings(settings) self.exec_logger.debug('Initialized with settings:' + str(self.settings)) # read quadrupole sequence if sequence is not None: self.load_sequence(sequence) self.idps = idps # flag to use dps for injection or not # connect to components on the OhmPi board if self.on_pi: # activation of I2C protocol self.i2c = busio.I2C(board.SCL, board.SDA) # noqa # I2C connexion to MCP23008, for current injection self.mcp = MCP23008(self.i2c, address=0x20) # ADS1115 for current measurement (AB) self.ads_current_address = 0x48 self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address) # ADS1115 for voltage measurement (MN) self.ads_voltage_address = 0x49 self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address) # current injection module if self.idps: self.DPS = minimalmodbus.Instrument(port='/dev/ttyUSB0', slaveaddress=1) # port name, address (decimal) self.DPS.serial.baudrate = 9600 # Baud rate 9600 as listed in doc self.DPS.serial.bytesize = 8 # self.DPS.serial.timeout = 1 # greater than 0.5 for it to work self.DPS.debug = False # self.DPS.serial.parity = 'N' # No parity self.DPS.mode = minimalmodbus.MODE_RTU # RTU mode self.DPS.write_register(0x0001, 40, 0) # max current allowed (36 mA for relays) # (last number) 0 is for mA, 3 is for A # injection courant and measure (TODO check if it works, otherwise back in run_measurement()) self.pin0 = self.mcp.get_pin(0) self.pin0.direction = Direction.OUTPUT self.pin0.value = False self.pin1 = self.mcp.get_pin(1) self.pin1.direction = Direction.OUTPUT self.pin1.value = False # set controller self.mqtt = mqtt self.cmd_id = None if self.mqtt: import paho.mqtt.client as mqtt_client self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" f" on {MQTT_CONTROL_CONFIG['hostname']} broker") def connect_mqtt() -> mqtt_client: def on_connect(mqttclient, userdata, flags, rc): if rc == 0: self.exec_logger.debug(f"Successfully connected to control broker:" f" {MQTT_CONTROL_CONFIG['hostname']}") else: self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}') client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False) client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'), MQTT_CONTROL_CONFIG['auth']['password']) client.on_connect = on_connect client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port']) return client try: self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}") self.controller = connect_mqtt() except Exception as e: self.exec_logger.debug(f'Unable to connect control broker: {e}') self.controller = None if self.controller is not None: self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}") try: self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos']) msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \ f" on {MQTT_CONTROL_CONFIG['hostname']} broker" self.exec_logger.debug(msg) print(colored(f'\u2611 {msg}', 'blue')) except Exception as e: self.exec_logger.warning(f'Unable to subscribe to control topic : {e}') self.controller = None publisher_config = MQTT_CONTROL_CONFIG.copy() publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic'] publisher_config.pop('ctrl_topic') def on_message(client, userdata, message): command = message.payload.decode('utf-8') self.exec_logger.debug(f'Received command {command}') self._process_commands(command) self.controller.on_message = on_message else: self.controller = None self.exec_logger.warning('No connection to control broker.' ' Use python/ipython to interact with OhmPi object...') @staticmethod def append_and_save(filename: str, last_measurement: dict, cmd_id=None): """Appends and saves the last measurement dict. Parameters ---------- cmd_id filename : str filename to save the last measurement dataframe last_measurement : dict Last measurement taken in the form of a python dictionary """ last_measurement = deepcopy(last_measurement) if 'fulldata' in last_measurement: d = last_measurement['fulldata'] n = d.shape[0] if n > 1: idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0])) udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1])) tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2])) last_measurement.update(idic) last_measurement.update(udic) last_measurement.update(tdic) last_measurement.pop('fulldata') if os.path.isfile(filename): # Load data file and append data to it with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writerow(last_measurement) # last_measurement.to_csv(f, header=False) else: # create data file and add headers with open(filename, 'a') as f: w = csv.DictWriter(f, last_measurement.keys()) w.writeheader() w.writerow(last_measurement) def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5): """Estimates best Tx voltage based on different strategies. At first a half-cycle is made for a short duration with a fixed known voltage. This gives us Iab and Rab. We also measure Vmn. A constant c = vmn/iab is computed (only depends on geometric factor and ground resistivity, that doesn't change during a quadrupole). Then depending on the strategy, we compute which vab to inject to reach the minimum/maximum Iab current or min/max Vmn. This function also compute the polarity on Vmn (on which pin of the ADS1115 we need to measure Vmn to get the positive value). Parameters ---------- best_tx_injtime : float, optional Time in milliseconds for the half-cycle used to compute Rab. strategy : str, optional Either: - vmin : compute Vab to reach a minimum Iab and Vmn - vmax : compute Vab to reach a maximum Iab and Vmn - constant : apply given Vab tx_volt : float, optional Voltage apply to try to guess the best voltage. 5 V applied by default. If strategy "constant" is chosen, constant voltage to applied is "tx_volt". Returns ------- vab : float Proposed Vab according to the given strategy. polarity : int Either 1 or -1 to know on which pin of the ADS the Vmn is measured. """ # hardware limits voltage_min = 10. # mV voltage_max = 4500. current_min = voltage_min / (self.r_shunt * 50) # mA current_max = voltage_max / (self.r_shunt * 50) tx_max = 40. # volt # check of volt volt = tx_volt if volt > tx_max: self.exec_logger.warning('Sorry, cannot inject more than 40 V, set it back to 5 V') volt = 5. # redefined the pin of the mcp (needed when relays are connected) self.pin0 = self.mcp.get_pin(0) self.pin0.direction = Direction.OUTPUT self.pin0.value = False self.pin1 = self.mcp.get_pin(1) self.pin1.direction = Direction.OUTPUT self.pin1.value = False # select a polarity to start with self.pin0.value = True self.pin1.value = False # set voltage for test self.DPS.write_register(0x0000, volt, 2) self.DPS.write_register(0x09, 1) # DPS5005 on time.sleep(best_tx_injtime) # inject for given tx time # autogain self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address) self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address) # print('current P0', AnalogIn(self.ads_current, ads.P0).voltage) # print('voltage P0', AnalogIn(self.ads_voltage, ads.P0).voltage) # print('voltage P2', AnalogIn(self.ads_voltage, ads.P2).voltage) gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0)) gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)) gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)) gain_voltage = np.min([gain_voltage0, gain_voltage2]) # print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage)) self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address) self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address) # we measure the voltage on both A0 and A2 to guess the polarity I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt # noqa measure current U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000. # noqa measure voltage U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. # noqa # print('I (mV)', I*50*self.r_shunt) # print('I (mA)', I) # print('U0 (mV)', U0) # print('U2 (mV)', U2) # check polarity polarity = 1 # by default, we guessed it right vmn = U0 if U0 < 0: # we guessed it wrong, let's use a correction factor polarity = -1 vmn = U2 # print('polarity', polarity) # compute constant c = vmn / I Rab = (volt * 1000.) / I # noqa self.exec_logger.debug(f'Rab = {Rab:.2f} Ohms') # implement different strategy if strategy == 'vmax': vmn_max = c * current_max if voltage_max > vmn_max > voltage_min: vab = current_max * Rab self.exec_logger.debug('target max current') else: iab = voltage_max / c vab = iab * Rab self.exec_logger.debug('target max voltage') if vab > 25000.: vab = 25000. vab = vab / 1000. * 0.9 elif strategy == 'vmin': vmn_min = c * current_min if voltage_min < vmn_min < voltage_max: vab = current_min * Rab self.exec_logger.debug('target min current') else: iab = voltage_min / c vab = iab * Rab self.exec_logger.debug('target min voltage') if vab < 1000.: vab = 1000. vab = vab / 1000. * 1.1 elif strategy == 'constant': vab = volt else: vab = 5 # self.DPS.write_register(0x09, 0) # DPS5005 off self.pin0.value = False self.pin1.value = False return vab, polarity @staticmethod def _find_identical_in_line(quads): """Finds quadrupole where A and B are identical. If A and B are connected to the same electrode, the Pi burns (short-circuit). Parameters ---------- quads : numpy.ndarray List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad. Returns ------- output : numpy.ndarray 1D array of int List of index of rows where A and B are identical. """ # if we have a 1D array (so only 1 quadrupole), make it a 2D array if len(quads.shape) == 1: quads = quads[None, :] output = np.where(quads[:, 0] == quads[:, 1])[0] return output def _gain_auto(self, channel): """Automatically sets the gain on a channel Parameters ---------- channel : ads.ADS1x15 Instance of ADS where voltage is measured. Returns ------- gain : float Gain to be applied on ADS1115. """ gain = 2 / 3 if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023): gain = 2 elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508): gain = 4 elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250): gain = 8 elif abs(channel.voltage) < 0.256: gain = 16 self.exec_logger.debug(f'Setting gain to {gain}') return gain def get_data(self, survey_names=[], cmd_id=None): """Get available data. Parameters ---------- survey_names : list of str, optional List of filenames already available from the html interface. So their content won't be returned again. Only files not in the list will be read. """ # get all .csv file in data folder fnames = [fname for fname in os.listdir('data/') if fname[-4:] == '.csv'] ddic = {} if cmd_id is None: cmd_id = 'unknown' for fname in fnames: if ((fname != 'readme.txt') and ('_rs' not in fname) and (fname.replace('.csv', '') not in survey_names)): try: data = np.loadtxt('data/' + fname, delimiter=',', skiprows=1, usecols=(1,2,3,4,8)) data = data[None, :] if len(data.shape) == 1 else data ddic[fname.replace('.csv', '')] = { 'a': data[:, 0].astype(int).tolist(), 'b': data[:, 1].astype(int).tolist(), 'm': data[:, 2].astype(int).tolist(), 'n': data[:, 3].astype(int).tolist(), 'rho': data[:, 4].tolist(), } except Exception as e: print(fname, ':', e) rdic = {'cmd_id': cmd_id, 'data': ddic} self.data_logger.info(json.dumps(rdic)) return ddic def interrupt(self, cmd_id=None): """Interrupts the acquisition. """ self.status = 'stopping' if self.thread is not None: self.thread.join() self.exec_logger.debug('Interrupted sequence acquisition...') else: self.exec_logger.debug('No sequence measurement thread to interrupt.') self.exec_logger.debug(f'Status: {self.status}') def load_sequence(self, filename: str, cmd_id=None): """Reads quadrupole sequence from file. Parameters ---------- cmd_id filename : str Path of the .csv or .txt file with A, B, M and N electrodes. Electrode index start at 1. Returns ------- sequence : numpy.array Array of shape (number quadrupoles * 4). """ self.exec_logger.debug(f'Loading sequence {filename}') sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32) # load quadrupole file if sequence is not None: self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.') # locate lines where the electrode index exceeds the maximum number of electrodes test_index_elec = np.array(np.where(sequence > self.max_elec)) # locate lines where electrode A == electrode B test_same_elec = self._find_identical_in_line(sequence) # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2) if test_index_elec.size != 0: for i in range(len(test_index_elec[0, :])): self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} ' f'exceeds the maximum number of electrodes') # sys.exit(1) sequence = None elif len(test_same_elec) != 0: for i in range(len(test_same_elec)): self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}') # sys.exit(1) sequence = None if sequence is not None: self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.') else: self.exec_logger.warning(f'Unable to load sequence {filename}') self.sequence = sequence def measure(self, **kwargs): warnings.warn('This function is deprecated. Use run_multiple_sequences() instead.', DeprecationWarning) self.run_multiple_sequences(**kwargs) def _process_commands(self, message: str): """Processes commands received from the controller(s) Parameters ---------- message : str message containing a command and arguments or keywords and arguments """ status = False cmd_id = '?' try: decoded_message = json.loads(message) self.exec_logger.debug(f'Decoded message {decoded_message}') cmd_id = decoded_message.pop('cmd_id', None) cmd = decoded_message.pop('cmd', None) # args = decoded_message.pop('args', None) # if args is not None: # if len(args) != 0: # if args[0] != '[': # args = f'["{args}"]' # self.exec_logger.debug(f'args to decode: {args}') # args = json.loads(args) if args != '[]' else None # self.exec_logger.debug(f'Decoded args {args}') # else: # args = None kwargs = decoded_message.pop('kwargs', None) # if kwargs is not None: # if len(kwargs) != 0: # if kwargs[0] != '{': # kwargs = '{"' + kwargs + '"}' # self.exec_logger.debug(f'kwargs to decode: {kwargs}') # kwargs = json.loads(kwargs) if kwargs != '' else None # self.exec_logger.debug(f'Decoded kwargs {kwargs}') # else: # kwargs = None self.exec_logger.debug(f"Calling method {cmd}({str(kwargs) if kwargs is not None else ''})") # self.exec_logger.debug(f"Calling method {cmd}({str(args) + ', ' if args is not None else ''}" # f"{str(kwargs) if kwargs is not None else ''})") if cmd_id is None: self.exec_logger.warning('You should use a unique identifier for cmd_id') if cmd is not None: try: # if args is None: # if kwargs is None: # output = getattr(self, cmd)() # else: # output = getattr(self, cmd)(**kwargs) # else: if kwargs is None: output = getattr(self, cmd)() else: output = getattr(self, cmd)(**kwargs) status = True except Exception as e: self.exec_logger.error( f"Unable to execute {cmd}({str(kwargs) if kwargs is not None else ''}): {e}") status = False except Exception as e: self.exec_logger.warning(f'Unable to decode command {message}: {e}') status = False finally: reply = {'cmd_id': cmd_id, 'status': status} reply = json.dumps(reply) self.exec_logger.debug(f'Execution report: {reply}') @staticmethod def quit(self, cmd_id=None): """Quits OhmPi""" exit() def _read_hardware_config(self): """Reads hardware configuration from config.py """ self.exec_logger.debug('Getting hardware config') self.id = OHMPI_CONFIG['id'] # ID of the OhmPi self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm self.Imax = OHMPI_CONFIG['Imax'] # maximum current self.exec_logger.debug(f'The maximum current cannot be higher than {self.Imax} mA') self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V self.nb_samples = OHMPI_CONFIG['nb_samples'] # number of samples measured for each stack self.version = OHMPI_CONFIG['version'] # hardware version self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes self.board_addresses = OHMPI_CONFIG['board_addresses'] self.board_version = OHMPI_CONFIG['board_version'] self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}') def read_quad(self, **kwargs): warnings.warn('This function is deprecated. Use load_sequence instead.', DeprecationWarning) self.load_sequence(**kwargs) def remove_data(self, **kwargs): """Remove all data in the data/ folder. """ shutil.rmtree('data') os.mkdir('data') def restart(self, cmd_id=None): self.exec_logger.info('Restarting pi...') os.system('reboot') def run_measurement(self, quad=None, nb_stack=None, injection_duration=None, autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1, cmd_id=None): """Measures on a quadrupole and returns transfer resistance. Parameters ---------- quad : iterable (list of int) Quadrupole to measure, just for labelling. Only switch_mux_on/off really create the route to the electrodes. nb_stack : int, optional Number of stacks. A stacl is considered two half-cycles (one positive, one negative). injection_duration : int, optional Injection time in seconds. autogain : bool, optional If True, will adapt the gain of the ADS1115 to maximize the resolution of the reading. strategy : str, optional (V3.0 only) If we search for best voltage (tx_volt == 0), we can choose different strategy: - vmin: find the lowest voltage that gives us a signal - vmax: find the highest voltage that stays in the range For a constant value, just set the tx_volt. tx_volt : float, optional (V3.0 only) If specified, voltage will be imposed. If 0, we will look for the best voltage. If the best Tx cannot be found, no measurement will be taken and values will be NaN. best_tx_injtime : float, optional (V3.0 only) Injection time in seconds used for finding the best voltage. cmd_id : """ self.exec_logger.debug('Starting measurement') self.exec_logger.debug('Waiting for data') # check arguments if quad is None: quad = [0, 0, 0, 0] if self.on_pi: if nb_stack is None: nb_stack = self.settings['nb_stack'] if injection_duration is None: injection_duration = self.settings['injection_duration'] tx_volt = float(tx_volt) # inner variable initialization sum_i = 0 sum_vmn = 0 sum_ps = 0 # let's define the pin again as if we run through measure() # as it's run in another thread, it doesn't consider these # and this can lead to short circuit! self.pin0 = self.mcp.get_pin(0) self.pin0.direction = Direction.OUTPUT self.pin0.value = False self.pin1 = self.mcp.get_pin(1) self.pin1.direction = Direction.OUTPUT self.pin1.value = False # get best voltage to inject AND polarity if self.idps: tx_volt, polarity = self._compute_tx_volt( best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt) self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V') else: polarity = 1 # first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous) self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address, mode=0) self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address, mode=0) # turn on the power supply start_delay = None end_delay = None out_of_range = False if self.idps: if not np.isnan(tx_volt): self.DPS.write_register(0x0000, tx_volt, 2) # set tx voltage in V self.DPS.write_register(0x09, 1) # DPS5005 on time.sleep(0.05) else: self.exec_logger.debug('No best voltage found, will not take measurement') out_of_range = True if not out_of_range: # we found a Vab in the range so we measure if autogain: # compute autogain self.pin0.value = True self.pin1.value = False time.sleep(injection_duration) gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0)) if polarity > 0: gain_voltage = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)) else: gain_voltage = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)) self.pin0.value = False self.pin1.value = False self.exec_logger.debug(f'Gain current: {gain_current:.3f}, gain voltage: {gain_voltage:.3f}') self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address, mode=0) self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address, mode=0) self.pin0.value = False self.pin1.value = False # one stack = 2 half-cycles (one positive, one negative) pinMN = 0 if polarity > 0 else 2 # noqa # sampling for each stack at the end of the injection sampling_interval = 10 # ms self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1 # full data for waveform fulldata = [] # we sample every 10 ms (as using AnalogIn for both current # and voltage takes about 7 ms). When we go over the injection # duration, we break the loop and truncate the meas arrays # only the last values in meas will be taken into account start_time = time.time() # start counter for n in range(0, nb_stack * 2): # for each half-cycles # current injection if (n % 2) == 0: self.pin0.value = True self.pin1.value = False else: self.pin0.value = False self.pin1.value = True # current injection nr2 self.exec_logger.debug(f'Stack {n} {self.pin0.value} {self.pin1.value}') # measurement of current i and voltage u during injection meas = np.zeros((self.nb_samples, 3)) * np.nan start_delay = time.time() # stating measurement time dt = 0 k = 0 for k in range(0, self.nb_samples): # reading current value on ADS channels meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt) if self.board_version == '22.11': if pinMN == 0: meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000 else: meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P2).voltage * 1000 elif self.board_version == '22.10': meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000 # else: # self.exec_logger.debug('Unknown board') time.sleep(sampling_interval / 1000) dt = time.time() - start_delay # real injection time (s) meas[k, 2] = time.time() - start_time if dt > (injection_duration - 0 * sampling_interval / 1000.): break # stop current injection self.pin0.value = False self.pin1.value = False end_delay = time.time() # truncate the meas array if we didn't fill the last samples meas = meas[:k + 1] # measurement of current i and voltage u during off time measpp = np.zeros((meas.shape[0], 3)) * np.nan start_delay = time.time() # stating measurement time dt = 0 for k in range(0, measpp.shape[0]): # reading current value on ADS channels measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000.) / (50 * self.r_shunt) if self.board_version == '22.11': if pinMN == 0: measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000. else: measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1 elif self.board_version == '22.10': measpp[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000. else: self.exec_logger.debug('unknown board') time.sleep(sampling_interval / 1000) dt = time.time() - start_delay # real injection time (s) measpp[k, 2] = time.time() - start_time if dt > (injection_duration - 0 * sampling_interval / 1000.): break end_delay = time.time() # truncate the meas array if we didn't fill the last samples measpp = measpp[:k + 1] # we alternate on which ADS1115 pin we measure because of sign of voltage if pinMN == 0: pinMN = 2 # noqa else: pinMN = 0 # noqa # store data for full wave form fulldata.append(meas) fulldata.append(measpp) # TODO get battery voltage and warn if battery is running low # TODO send a message on SOH stating the battery level # let's do some calculation (out of the stacking loop) for n, meas in enumerate(fulldata[::2]): # take average from the samples per stack, then sum them all # average for the last third of the stacked values # is done outside the loop sum_i = sum_i + (np.mean(meas[-int(meas.shape[0] // 3):, 0])) vmn1 = np.mean(meas[-int(meas.shape[0] // 3), 1]) if (n % 2) == 0: sum_vmn = sum_vmn - vmn1 sum_ps = sum_ps + vmn1 else: sum_vmn = sum_vmn + vmn1 sum_ps = sum_ps + vmn1 else: sum_i = np.nan sum_vmn = np.nan sum_ps = np.nan fulldata = None if self.idps: self.DPS.write_register(0x0000, 0, 2) # reset to 0 volt self.DPS.write_register(0x09, 0) # DPS5005 off # reshape full data to an array of good size # we need an array of regular size to save in the csv if not out_of_range: fulldata = np.vstack(fulldata) # we create a big enough array given nb_samples, number of # half-cycles (1 stack = 2 half-cycles), and twice as we # measure decay as well a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 3)) * np.nan a[:fulldata.shape[0], :] = fulldata fulldata = a else: np.array([[]]) # create a dictionary and compute averaged values from all stacks d = { "time": datetime.now().isoformat(), "A": quad[0], "B": quad[1], "M": quad[2], "N": quad[3], "inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0., "Vmn [mV]": sum_vmn / (2 * nb_stack), "I [mA]": sum_i / (2 * nb_stack), "R [ohm]": sum_vmn / sum_i, "Ps [mV]": sum_ps / (2 * nb_stack), "nbStack": nb_stack, "Tx [V]": tx_volt if not out_of_range else 0., "CPU temp [degC]": CPUTemperature().temperature, "Nb samples [-]": self.nb_samples, "fulldata": fulldata, } else: # for testing, generate random data d = {'time': datetime.now().isoformat(), 'A': quad[0], 'B': quad[1], 'M': quad[2], 'N': quad[3], 'R [ohm]': np.abs(np.random.randn(1)).tolist()} # to the data logger dd = d.copy() dd.pop('fulldata') # too much for logger dd.update({'A': str(dd['A'])}) dd.update({'B': str(dd['B'])}) dd.update({'M': str(dd['M'])}) dd.update({'N': str(dd['N'])}) # round float to 2 decimal for key in dd.keys(): if isinstance(dd[key], float): dd[key] = np.round(dd[key], 3) dd['cmd_id'] = str(cmd_id) self.data_logger.info(dd) return d def run_multiple_sequences(self, cmd_id=None, sequence_delay=None, nb_meas=None, **kwargs): """Runs multiple sequences in a separate thread for monitoring mode. Can be stopped by 'OhmPi.interrupt()'. Additional arguments are passed to run_measurement(). Parameters ---------- cmd_id : sequence_delay : int, optional Number of seconds at which the sequence must be started from each others. nb_meas : int, optional Number of time the sequence must be repeated. kwargs : dict, optional See help(k.run_measurement) for more info. """ # self.run = True if sequence_delay is None: sequence_delay = self.settings['sequence_delay'] sequence_delay = int(sequence_delay) if nb_meas is None: nb_meas = self.settings['nb_meas'] self.status = 'running' self.exec_logger.debug(f'Status: {self.status}') self.exec_logger.debug(f'Measuring sequence: {self.sequence}') def func(): for g in range(0, nb_meas): # for time-lapse monitoring if self.status == 'stopping': self.exec_logger.warning('Data acquisition interrupted') break t0 = time.time() self.run_sequence(**kwargs) # sleeping time between sequence dt = sequence_delay - (time.time() - t0) if dt < 0: dt = 0 if nb_meas > 1: time.sleep(dt) # waiting for next measurement (time-lapse) self.status = 'idle' self.thread = threading.Thread(target=func) self.thread.start() def run_sequence(self, cmd_id=None, **kwargs): """Runs sequence synchronously (=blocking on main thread). Additional arguments are passed to run_measurement(). """ self.status = 'running' self.exec_logger.debug(f'Status: {self.status}') self.exec_logger.debug(f'Measuring sequence: {self.sequence}') t0 = time.time() # create filename with timestamp filename = self.settings["export_path"].replace('.csv', f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv') self.exec_logger.debug(f'Saving to {filename}') # make sure all multiplexer are off self.reset_mux() # measure all quadrupole of the sequence if self.sequence is None: n = 1 else: n = self.sequence.shape[0] for i in range(0, n): if self.sequence is None: quad = np.array([0, 0, 0, 0]) else: quad = self.sequence[i, :] # quadrupole if self.status == 'stopping': break # call the switch_mux function to switch to the right electrodes self.switch_mux_on(quad) # run a measurement if self.on_pi: acquired_data = self.run_measurement(quad, **kwargs) else: # for testing, generate random data acquired_data = { 'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]], 'R [ohm]': np.abs(np.random.randn(1)) } # switch mux off self.switch_mux_off(quad) # add command_id in dataset acquired_data.update({'cmd_id': cmd_id}) # log data to the data logger # self.data_logger.info(f'{acquired_data}') # save data and print in a text file self.append_and_save(filename, acquired_data) self.exec_logger.debug(f'quadrupole {i + 1:d}/{n:d}') self.status = 'idle' def run_sequence_async(self, cmd_id=None, **kwargs): """Runs the sequence in a separate thread. Can be stopped by 'OhmPi.interrupt()'. Additional arguments are passed to run_measurement(). Parameters ---------- cmd_id: """ def func(): self.run_sequence(**kwargs) self.thread = threading.Thread(target=func) self.thread.start() self.status = 'idle' def rs_check(self, tx_volt=12, cmd_id=None): """Checks contact resistances""" # create custom sequence where MN == AB # we only check the electrodes which are in the sequence (not all might be connected) if self.sequence is None or not self.use_mux: quads = np.array([[1, 2, 1, 2]], dtype=np.uint32) else: elec = np.sort(np.unique(self.sequence.flatten())) # assumed order quads = np.vstack([ elec[:-1], elec[1:], elec[:-1], elec[1:], ]).T if self.idps: quads[:, 2:] = 0 # we don't open Vmn to prevent burning the MN part # as it has a smaller range of accepted voltage # create filename to store RS export_path_rs = self.settings['export_path'].replace('.csv', '') \ + '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv' # perform RS check # self.run = True self.status = 'running' if self.on_pi: # make sure all mux are off to start with self.reset_mux() # measure all quad of the RS sequence for i in range(0, quads.shape[0]): quad = quads[i, :] # quadrupole self.switch_mux_on(quad) # put before raising the pins (otherwise conflict i2c) d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=0.2, tx_volt=tx_volt, autogain=False) if self.idps: voltage = tx_volt * 1000. # imposed voltage on dps5005 else: voltage = d['Vmn [mV]'] current = d['I [mA]'] # compute resistance measured (= contact resistance) resist = abs(voltage / current) / 1000. # print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format( # current, voltage, resist)) msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, ' \ f'V: {voltage :>10.3f} mV, ' \ f'R: {resist :>10.3f} kOhm' self.exec_logger.debug(msg) # if contact resistance = 0 -> we have a short circuit!! if resist < 1e-5: msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resist:.3f} kOhm' self.exec_logger.warning(msg) # save data in a text file self.append_and_save(export_path_rs, { 'A': quad[0], 'B': quad[1], 'RS [kOhm]': resist, }) # close mux path and put pin back to GND self.switch_mux_off(quad) else: pass self.status = 'idle' # # # TODO if interrupted, we would need to restore the values # # TODO or we offer the possibility in 'run_measurement' to have rs_check each time? def set_sequence(self, sequence=None, cmd_id=None): try: self.sequence = np.array(sequence).astype(int) # self.sequence = np.loadtxt(StringIO(sequence)).astype('uint32') status = True except Exception as e: self.exec_logger.warning(f'Unable to set sequence: {e}') status = False def stop(self, **kwargs): warnings.warn('This function is deprecated. Use interrupt instead.', DeprecationWarning) self.interrupt(**kwargs) def _switch_mux(self, electrode_nr, state, role): """Selects the right channel for the multiplexer cascade for a given electrode. Parameters ---------- electrode_nr : int Electrode index to be switched on or off. state : str Either 'on' or 'off'. role : str Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board. """ if not self.use_mux or not self.on_pi: if not self.on_pi: self.exec_logger.warning('Cannot reset mux while in simulation mode...') else: self.exec_logger.warning('You cannot use the multiplexer because use_mux is set to False.' ' Set use_mux to True to use the multiplexer...') elif self.sequence is None: self.exec_logger.warning('Unable to switch MUX without a sequence') else: # choose with MUX board tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_addresses[role]) # find I2C address of the electrode and corresponding relay # considering that one MCP23017 can cover 16 electrodes i2c_address = 7 - (electrode_nr - 1) // 16 # quotient without rest of the division relay_nr = electrode_nr - (electrode_nr // 16) * 16 + 1 if i2c_address is not None: # select the MCP23017 of the selected MUX board mcp2 = MCP23017(tca[i2c_address]) mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT if state == 'on': mcp2.get_pin(relay_nr - 1).value = True else: mcp2.get_pin(relay_nr - 1).value = False self.exec_logger.debug(f'Switching relay {relay_nr} ' f'({str(hex(self.board_addresses[role]))}) {state} for electrode {electrode_nr}') else: self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}') def switch_mux_on(self, quadrupole, cmd_id=None): """Switches on multiplexer relays for given quadrupole. Parameters ---------- cmd_id quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ roles = ['A', 'B', 'M', 'N'] # another check to be sure A != B if quadrupole[0] != quadrupole[1]: for i in range(0, 4): if quadrupole[i] > 0: self._switch_mux(quadrupole[i], 'on', roles[i]) else: self.exec_logger.error('Not switching MUX : A == B -> short circuit risk detected!') def switch_mux_off(self, quadrupole, cmd_id=None): """Switches off multiplexer relays for given quadrupole. Parameters ---------- cmd_id quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ roles = ['A', 'B', 'M', 'N'] for i in range(0, 4): if quadrupole[i] > 0: self._switch_mux(quadrupole[i], 'off', roles[i]) def test_mux(self, activation_time=1.0, address=0x70): """Interactive method to test the multiplexer. Parameters ---------- activation_time : float, optional Time in seconds during which the relays are activated. address : hex, optional Address of the multiplexer board to test (e.g. 0x70, 0x71, ...). """ self.use_mux = True self.reset_mux() # choose with MUX board tca = adafruit_tca9548a.TCA9548A(self.i2c, address) # ask use some details on how to proceed a = input(' if vous want try 1 channel choose 1, if you want try all channel choose 2!') if a == '1': print("run channel by channel test") electrode = int(input('Choose your electrode number (integer):')) electrodes = [electrode] elif a == '2': electrodes = range(1, 65) else: print ("Wrong choice !") return # run the test for electrode_nr in electrodes: # find I2C address of the electrode and corresponding relay # considering that one MCP23017 can cover 16 electrodes i2c_address = 7 - (electrode_nr - 1) // 16 # quotient without rest of the division relay_nr = electrode_nr - (electrode_nr // 16) * 16 + 1 if i2c_address is not None: # select the MCP23017 of the selected MUX board mcp2 = MCP23017(tca[i2c_address]) mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT # activate relay for given time mcp2.get_pin(relay_nr - 1).value = True print('electrode:', electrode_nr, ' activated...', end='', flush=True) time.sleep(activation_time) mcp2.get_pin(relay_nr - 1).value = False print(' deactivated' ) time.sleep(activation_time) print('Test finished.') def reset_mux(self, cmd_id=None): """Switches off all multiplexer relays.""" if self.on_pi and self.use_mux: roles = ['A', 'B', 'M', 'N'] for i in range(0, 4): for j in range(1, self.max_elec + 1): self._switch_mux(j, 'off', roles[i]) self.exec_logger.debug('All MUX switched off.') elif not self.on_pi: self.exec_logger.warning('Cannot reset mux while in simulation mode...') else: self.exec_logger.warning('You cannot use the multiplexer because use_mux is set to False.' ' Set use_mux to True to use the multiplexer...') def _update_acquisition_settings(self, config): warnings.warn('This function is deprecated, use update_settings() instead.', DeprecationWarning) self.update_settings(settings=config) def update_settings(self, settings: str, cmd_id=None): """Updates acquisition settings from a json file or dictionary. Parameters can be: - nb_electrodes (number of electrode used, if 4, no MUX needed) - injection_duration (in seconds) - nb_meas (total number of times the sequence will be run) - sequence_delay (delay in second between each sequence run) - nb_stack (number of stack for each quadrupole measurement) - export_path (path where to export the data, timestamp will be added to filename) Parameters ---------- cmd_id settings : str, dict Path to the .json settings file or dictionary of settings. """ status = False if settings is not None: try: if isinstance(settings, dict): self.settings.update(settings) else: with open(settings) as json_file: dic = json.load(json_file) self.settings.update(dic) self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings)) status = True except Exception as e: # noqa self.exec_logger.warning('Unable to update settings.') status = False else: self.exec_logger.warning('Settings are missing...') return status # Properties @property def sequence(self): """Gets sequence""" if self._sequence is not None: assert isinstance(self._sequence, np.ndarray) return self._sequence @sequence.setter def sequence(self, sequence): """Sets sequence""" if sequence is not None: assert isinstance(sequence, np.ndarray) self.use_mux = True else: self.use_mux = False self._sequence = sequence VERSION = '2.1.5' print(colored(r' ________________________________' + '\n' + r'| _ | | | || \/ || ___ \_ _|' + '\n' + r'| | | | |_| || . . || |_/ / | |' + '\n' + r'| | | | _ || |\/| || __/ | |' + '\n' + r'\ \_/ / | | || | | || | _| |_' + '\n' + r' \___/\_| |_/\_| |_/\_| \___/ ', 'red')) print('Version:', VERSION) platform, on_pi = get_platform() if on_pi: print(colored(f'\u2611 Running on {platform} platform', 'green')) # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...) # and emit a warning otherwise if not arm64_imports: print(colored(f'Warning: Required packages are missing.\n' f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow')) else: print(colored(f'\u26A0 Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow')) current_time = datetime.now() print(f'local date and time : {current_time.strftime("%Y-%m-%d %H:%M:%S")}') # for testing if __name__ == "__main__": ohmpi = OhmPi(settings=OHMPI_CONFIG['settings']) if ohmpi.controller is not None: ohmpi.controller.loop_forever()