""" created on January 6, 2020 Update February 2022 Ohmpi.py is a program to control a low-cost and open hardward resistivity meter OhmPi that has been developed by Rémi CLEMENT(INRAE),Vivien DUBOIS(INRAE),Hélène GUYARD(IGE), Nicolas FORQUET (INRAE), and Yannick FARGIER (IFSTTAR). """ VERSION = '2.0.0' print('\033[1m'+'\033[31m'+' ________________________________') print('| _ | | | || \/ || ___ \_ _|') print('| | | | |_| || . . || |_/ / | |' ) print('| | | | _ || |\/| || __/ | |') print('\ \_/ / | | || | | || | _| |_') print(' \___/\_| |_/\_| |_/\_| \___/ ') print('\033[0m') print('OhmPi start' ) print('Version:', VERSION) print('Import libraries') import os import sys import json import glob import numpy as np import pandas as pd import time from datetime import datetime from termcolor import colored import threading if True: import board, busio, adafruit_tca9548a import adafruit_ads1x15.ads1115 as ADS from adafruit_ads1x15.analog_in import AnalogIn from adafruit_mcp230xx.mcp23008 import MCP23008 from adafruit_mcp230xx.mcp23017 import MCP23017 import digitalio from digitalio import Direction from gpiozero import CPUTemperature current_time = datetime.now() print(current_time.strftime("%Y-%m-%d %H:%M:%S")) # from logging_setup import setup_loggers # from mqtt_setup import mqtt_client_setup # msg_logger, msg_log_filename, data_logger, data_log_filename, logging_level = setup_loggers() # mqtt_client, measurement_topic = mqtt_client_setup() # msg_logger.info(f'publishing mqtt to topic {measurement_topic}') class OhmPi(object): def __init__(self, config=None, sequence=None, onpi=True, output='print'): """Create the main OhmPi object. Parameters ---------- config : str, optional Path to the .json configuration file. sequence : str, optional Path to the .txt where the sequence is read. By default, a 1 quadrupole sequence: 1, 2, 3, 4 is used. onpi : bool, optional True if running on the RaspberryPi. False for testing (random data generated). output : str, optional Either 'print' for a console output or 'mqtt' for publication onto MQTT broker. """ # flags and attributes self.onpi = onpi # True if run from the RaspberryPi with the hardware, otherwise False for random data self.output = output # type of output print self.status = 'idle' # either running or idle self.run = False # flag is True when measuring self.thread = None # contains the handle for the thread taking the measurement self.path = 'data/' # wher to save the .csv # read in hardware parameters (seetings.py) self._read_hardware_parameters() # default acquisition parameters self.pardict = { 'injection_duration': 0.2, 'nbr_meas': 100, 'sequence_delay': 1, 'nb_stack': 1, 'export_path': 'data/measurement.csv' } # read in acquisition parameters if config is not None: self._read_acquisition_parameters(config) self.dump('Initialized with configuration:' + str(self.pardict), level='debug') # read quadrupole sequence if sequence is None: self.sequence = np.array([[1, 2, 3, 4]]) else: self.read_quad(sequence) # address of the multiplexer board self.board_address = { 'A': 0x76, 'B': 0x71, 'M': 0x74, 'N': 0x70 } # connect to components on the OhmPi board if self.onpi: # activation of I2C protocol self.i2c = busio.I2C(board.SCL, board.SDA) # I2C connexion to MCP23008, for current injection self.mcp = MCP23008(self.i2c, address=0x20) # ADS1115 for current measurement (AB) self.ads_current = ADS.ADS1115(self.i2c, gain=16, data_rate=860, address=0x48) # ADS1115 for voltage measurement (MN) self.ads_voltage = ADS.ADS1115(self.i2c, gain=2/3, data_rate=860, address=0x49) def dump(self, msg, level='debug'): """Function for output management. Parameters ---------- msg : str Body of the message. level : str, optional Level of the message, either: 'error', 'warn', 'debug' """ # TODO all message to be logged using python logging library and rotatin log if self.output == 'print': if level == 'error': print(colored(level.upper() + ' : ' + msg, 'red')) elif level == 'warn': print(colored(level.upper() + ' : ' + msg, 'yellow')) else: print(level.upper() + ' : ' + msg) elif self.output == 'mqtt': if level == 'debug': # TODO mqtt transmission here pass def _read_acquisition_parameters(self, config): """Read acquisition parameters. Parameters can be: - nb_electrodes (number of electrode used, if 4, no MUX needed) - injection_duration (in seconds) - nbr_meas (total number of times the sequence will be run) - sequence_delay (delay in second between each sequence run) - stack (number of stack for each quadrupole measurement) - export_path (path where to export the data, timestamp will be added to filename) Parameters ---------- config : str Path to the .json or dictionnary. """ if isinstance(config, dict): self.pardict.update(config) else: with open(config) as json_file: dic = json.load(json_file) self.pardict.update(dic) self.dump('Acquisition parameters updated: ' + str(self.pardict), level='debug') def _read_hardware_parameters(self): """Read hardware parameters from settings.py. """ from settings import OHMPI_CONFIG self.id = OHMPI_CONFIG['id'] # ID of the OhmPi self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm self.Imax = OHMPI_CONFIG['Imax'] # maximum current self.dump('The maximum current cannot be higher than 48 mA', level='warn') self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ADS.P2, measurement in V/V self.coef_p3 = OHMPI_CONFIG['coef_p3'] # slope for current conversion for ADS.P3, measurement in V/V self.offset_p2 = OHMPI_CONFIG['offset_p2'] self.offset_p3 = OHMPI_CONFIG['offset_p3'] self.nb_samples = OHMPI_CONFIG['integer'] # number of samples measured for each stack self.version = OHMPI_CONFIG['version'] # hardware version self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes self.dump('OHMPI_CONFIG = ' + str(OHMPI_CONFIG), level='debug') def find_identical_in_line(self, quads): """Find quadrupole which where A and B are identical. If A and B are connected to the same relay, the Pi burns (short-circuit). Parameters ---------- quads : 1D or 2D array List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad. Returns ------- output : 1D array of int List of index of rows where A and B are identical. """ # TODO is this needed for M and N? # if we have a 1D array (so only 1 quadrupole), make it 2D if len(quads.shape) == 1: quads = quads[None, :] output = np.where(quads[:, 0] == quads[:, 1])[0] # output = [] # if array_object.ndim == 1: # temp = np.zeros(4) # for i in range(len(array_object)): # temp[i] = np.count_nonzero(array_object == array_object[i]) # if any(temp > 1): # output.append(0) # else: # for i in range(len(array_object[:,1])): # temp = np.zeros(len(array_object[1,:])) # for j in range(len(array_object[1,:])): # temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j]) # if any(temp > 1): # output.append(i) return output def read_quad(self, filename): """Read quadrupole sequence from file. Parameters ---------- filename : str Path of the .csv or .txt file with A, B, M and N electrodes. Electrode index start at 1. Returns ------- output : numpy.array Array of shape (number quadrupoles * 4). """ output = np.loadtxt(filename, delimiter=" ", dtype=int) # load quadripole file # locate lines where the electrode index exceeds the maximum number of electrodes test_index_elec = np.array(np.where(output > self.max_elec)) # locate lines where electrode A == electrode B test_same_elec = self.find_identical_in_line(output) # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2) if test_index_elec.size != 0: for i in range(len(test_index_elec[0,:])): self.dump("Error: An electrode index at line " + str(test_index_elec[0,i]+1) + " exceeds the maximum number of electrodes", level="error") #sys.exit(1) output = None elif len(test_same_elec) != 0: for i in range(len(test_same_elec)): self.dump("Error: An electrode index A == B detected at line " + str(test_same_elec[i]+1), level="error") #sys.exit(1) output = None if output is not None: self.dump('Sequence of {:d} quadrupoles read.'.format(output.shape[0]), level='debug') self.sequence = output def switch_mux(self, electrode_nr, state, role): """Select the right channel for the multiplexer cascade for a given electrode. Parameters ---------- electrode_nr : int Electrode index to be switched on or off. state : str Either 'on' or 'off'. role : str Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board. """ if self.sequence.max() <= 4: # only 4 electrodes so no MUX pass else: # choose with MUX board tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role]) # find I2C addres of the electrode and corresponding relay # TODO from number of electrode, the below can be guessed i2c_address = None # considering that one MCP23017 can cover 16 electrodes electrode_nr = electrode_nr - 1 # switch to 0 indexing i2c_address = 7 - electrode_nr // 16 # quotient without rest of the division relay_nr = electrode_nr - (electrode_nr // 16)*16 relay_nr = relay_nr + 1 # switch back to 1 based indexing # if electrode_nr < 17: # i2c_address = 7 # relay_nr = electrode_nr # elif 16 < electrode_nr < 33: # i2c_address = 6 # relay_nr = electrode_nr - 16 # elif 32 < electrode_nr < 49: # i2c_address = 5 # relay_nr = electrode_nr - 32 # elif 48 < electrode_nr < 65: # i2c_address = 4 # relay_nr = electrode_nr - 48 if i2c_address is not None: # select the MCP23017 of the selected MUX board mcp2 = MCP23017(tca[i2c_address]) mcp2.get_pin(relay_nr-1).direction = digitalio.Direction.OUTPUT if state == 'on': mcp2.get_pin(relay_nr-1).value = True else: mcp2.get_pin(relay_nr-1).value = False self.dump(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}', level='debug') else: self.dump(f'Unable to address electrode nr {electrode_nr}', level='warn') def switch_mux_on(self, quadrupole): """Switch on multiplexer relays for given quadrupole. Parameters ---------- quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ roles = ['A', 'B', 'M', 'N'] # another check to be sure A != B if quadrupole[0] != quadrupole[1]: for i in range(0, 4): self.switch_mux(quadrupole[i], 'on', roles[i]) else: self.dump('A == B -> short circuit detected!', level='error') def switch_mux_off(self, quadrupole): """Switch off multiplexer relays for given quadrupole. Parameters ---------- quadrupole : list of 4 int List of 4 integers representing the electrode numbers. """ roles = ['A', 'B', 'M', 'N'] for i in range(0, 4): self.switch_mux(quadrupole[i], 'off', roles[i]) def reset_mux(self): """Switch off all multiplexer relays.""" roles = ['A', 'B', 'M', 'N'] for i in range(0, 4): for j in range(1, self.max_elec + 1): self.switch_mux(j, 'off', roles[i]) self.dump('All MUX switched off.', level='debug') def run_measurement(self, quad, nb_stack=None, injection_duration=None): """Do a 4 electrode measurement and measure transfer resistance obtained. Parameters ---------- nb_stack : int, optional Number of stacks. injection_detlat : int, optional Injection time in seconds. quad : list of int Quadrupole to measure. """ # TODO here we can add the current_injected or voltage_injected in mA or mV # check arguments if nb_stack is None: nb_stack = self.pardict['stack'] if injection_duration is None: injection_duration = self.pardict['injection_duration'] start_time = time.time() # inner variable initialization injection_current = 0 sum_vmn = 0 sum_ps = 0 # injection courant and measure pin0 = self.mcp.get_pin(0) pin0.direction = Direction.OUTPUT pin1 = self.mcp.get_pin(1) pin1.direction = Direction.OUTPUT pin0.value = False pin1.value = False # TODO I don't get why 3 + 2*nb_stack - 1? why not just rnage(nb_stack)? # or do we consider 1 stack = one full polarity? do we discard the first 3 readings? for n in range(0, 3+2*nb_stack-1): # current injection if (n % 2) == 0: pin1.value = True pin0.value = False # current injection polarity nr1 else: pin0.value = True pin1.value = False # current injection nr2 start_delay = time.time() # stating measurement time time.sleep(injection_duration) # delay depending on current injection duration # measurement of current i and voltage u # sampling for each stack at the end of the injection meas = np.zeros((self.nb_samples, 3)) for k in range(0, self.nb_samples): meas[k, 0] = (AnalogIn(self.ads_current, ADS.P0).voltage*1000) / (50 * self.r_shunt) # reading current value on ADS channel A0 meas[k, 1] = AnalogIn(self.ads_voltage, ADS.P0).voltage * self.coef_p2 * 1000 meas[k, 2] = AnalogIn(self.ads_voltage, ADS.P1).voltage * self.coef_p3 * 1000 # reading voltage value on ADS channel A2 # stop current injection pin1.value = False pin0.value = False end_delay = time.time() # take average from the samples per stack, then sum them all # average for all stack is done outside the loop injection_current = injection_current + (np.mean(meas[:, 0])) vmn1 = np.mean(meas[:, 1]) - np.mean(meas[:, 2]) if (n % 2) == 0: sum_vmn = sum_vmn - vmn1 sum_ps = sum_ps + vmn1 else: sum_vmn = sum_vmn + vmn1 sum_ps = sum_ps + vmn1 # TODO get battery voltage and warn if battery is running low end_calc = time.time() # TODO I am not sure I undestand the computation below # wait twice the actual injection time between two injection # so it's a 50% duty cycle right? time.sleep(2*(end_delay-start_delay)-(end_calc-start_delay)) # create dateframe and compute averaged values from all stacks df = pd.DataFrame({ "time": [datetime.now()], "A": [(1)], "B": [(2)], "M": [(3)], "N": [(4)], "inj time [ms]": (end_delay - start_delay) * 1000, "Vmn [mV]": [(sum_vmn / (3 + 2 * nb_stack - 1))], "I [mA]": [(injection_current / (3 + 2 * nb_stack - 1))], "R [ohm]": [(sum_vmn / (3 + 2 * nb_stack - 1) / (injection_current / (3 + 2 * nb_stack - 1)))], "Ps [mV]": [(sum_ps / (3 + 2 * nb_stack - 1))], "nbStack": [nb_stack], "CPU temp [degC]": [CPUTemperature().temperature], "Time [s]": [(-start_time + time.time())], "Nb samples [-]": [self.nb_samples] }) # round number to two decimal for nicer string output output = df.round(2) self.dump(output.to_string(), level='debug') time.sleep(1) # TODO why this? return df def rs_check(self): """Check contact resistance. """ # create custom sequence where MN == AB nelec = self.sequence.max() # number of elec used in the sequence quads = np.vstack([ np.arange(nelec - 1) + 1, np.arange(nelec - 1) + 2, np.arange(nelec - 1) + 1, np.arange(nelec - 1) + 2 ]).T # create backup TODO not good export_path = self.pardict['export_path'].copy() sequence = self.sequence.copy() # assign new value self.pardict['export_path'] = export_path.replace('.csv', '_rs.csv') self.sequence = quads # run the RS check self.dump('RS check (check contact resistance)', level='debug') self.measure() # restore self.pardict['export_path'] = export_path self.sequence = sequence # TODO if interrupted, we would need to restore the values # TODO or we offer the possiblity in 'run_measurement' to have rs_check each time? def append_and_save(self, fname, last_measurement): """Append and save last measurement dataframe. Parameters ---------- last_measurement : pandas.DataFrame Last measurement taken in the form of a pandas dataframe. """ if os.path.isfile(fname): # Load data file and append data to it with open(fname, 'a') as f: last_measurement.to_csv(f, header=False) else: # create data file and add headers with open(fname, 'a') as f: last_measurement.to_csv(f, header=True) def measure(self): """Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'. """ self.run = True self.status = 'running' self.dump('status = ' + self.status, level='debug') def func(): for g in range(0, self.pardict["nbr_meas"]): # for time-lapse monitoring if self.run == False: self.dump('INTERRUPTED', level='debug') break t0 = time.time() # create filename with timestamp fname = self.pardict["export_path"].replace('.csv', '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '.csv') self.dump('saving to ' + fname, level='debug') # make sure all multiplexer are off self.reset_mux() # measure all quadrupole of the sequence for i in range(0, self.sequence.shape[0]): quad = self.sequence[i, :] # quadrupole if self.run == False: break # call the switch_mux function to switch to the right electrodes self.switch_mux_on(quad) # run a measurement if self.onpi: current_measurement = self.run_measurement(quad, self.pardict["stack"], self.pardict["injection_duration"]) else: # for testing, generate random data current_measurement = pd.DataFrame({ 'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]], 'R [ohm]': np.abs(np.random.randn(1)) }) # switch mux off self.switch_mux_off(quad) # save data and print in a text file self.append_and_save(fname, current_measurement) self.dump('{:d}/{:d}'.format(i+1, self.sequence.shape[0]), level='debug') # compute time needed to take measurement and subtract it from interval # between two sequence run (= sequence_delay) measuring_time = time.time() - t0 sleep_time = self.pardict["sequence_delay"] - measuring_time if sleep_time < 0: # it means that the measuring time took longer than the sequence delay sleep_time = 0 self.dump('The measuring time is longer than the sequence delay. Increase the sequence delay', level='warn') # sleeping time between sequence if self.pardict["nbr_meas"] > 1: time.sleep(sleep_time) # waiting for next measurement (time-lapse) self.status = 'idle' self.thread = threading.Thread(target=func) self.thread.start() def stop(self): """Stop the acquisition. """ self.run = False if self.thread is not None: self.thread.join() self.dump('status = ' + self.status) # test ohmpi = OhmPi(config='ohmpi_param.json') ohmpi.measure() time.sleep(4) ohmpi.stop()