""" created on January 6, 2020 Update December 2021 Ohmpi.py is a program to control a low-cost and open hardward resistivity meter OhmPi that has been developed by Rémi CLEMENT(INRAE),Vivien DUBOIS(INRAE),Hélène GUYARD(IGE), Nicolas FORQUET (INRAE), and Yannick FARGIER (IFSTTAR). """ print('\033[1m'+'\033[31m'+' ________________________________') print('| _ | | | || \/ || ___ \_ _|') print('| | | | |_| || . . || |_/ / | |' ) print('| | | | _ || |\/| || __/ | |') print('\ \_/ / | | || | | || | _| |_') print(' \___/\_| |_/\_| |_/\_| \___/ ') print('\033[0m') print('OHMPI start' ) print('Vers: 1.50') print('Import library') import RPi.GPIO as GPIO import time , board, busio, numpy, os, sys, json, glob from datetime import datetime import adafruit_ads1x15.ads1115 as ADS from adafruit_ads1x15.analog_in import AnalogIn from pandas import DataFrame # import pandas as pd import os.path from gpiozero import CPUTemperature """ display start time """ current_time = datetime.now() print(current_time.strftime("%Y-%m-%d %H:%M:%S")) """ hardware parameters """ R_ref = 50.25# reference resistance value in ohm coef_p0 = 2.50427 # slope for current conversion for ADS.P0, measurement in V/V coef_p1 = 2.50378# slope for current conversion for ADS.P1, measurement in V/V coef_p2 = 2.50447 # slope for current conversion for ADS.P2, measurement in V/V coef_p3 = 2.50259 # slope for current conversion for ADS.P3, measurement in V/V offset_p0=-0.004814 offset_p1= 0.005243 offset_p2= 0.004238 offset_p3= 0.006433 export_path = "/home/pi/Desktop/measurement.csv" base_dir = '/sys/bus/w1/devices/' device_folder = glob.glob(base_dir + '28*')[0] device_file = device_folder + '/w1_slave' # GPIO initialization GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(7, GPIO.OUT) GPIO.setup(8, GPIO.OUT) integer=100# if noise increase meas=numpy.zeros((4,integer)) """ import parameters """ with open('ohmpi_param.json') as json_file: pardict = json.load(json_file) i2c = busio.I2C(board.SCL, board.SDA) # I2C protocol setup ads = ADS.ADS1115(i2c, gain=2/3,data_rate=860) # I2C communication setup """ functions """ # function swtich_mux select the right channels for the multiplexer cascade for electrodes A, B, M and N. def switch_mux(quadripole): path2elec = numpy.loadtxt("path2elec.txt", delimiter=" ", dtype=bool) quadmux = numpy.loadtxt("quadmux.txt", delimiter=" ", dtype=int) for i in range(0,4): for j in range(0,5) : GPIO.output(int(quadmux[i,j]), bool(path2elec[quadripole[i]-1,j])) # function to find rows with identical values in different columns def find_identical_in_line(array_object): output = [] if array_object.ndim == 1: temp = numpy.zeros(4) for i in range(len(array_object)): temp[i] = numpy.count_nonzero(array_object == array_object[i]) if any(temp > 1): output.append(0) else: for i in range(len(array_object[:,1])): temp = numpy.zeros(len(array_object[1,:])) for j in range(len(array_object[1,:])): temp[j] = numpy.count_nonzero(array_object[i,:] == array_object[i,j]) if any(temp > 1): output.append(i) return output # read quadripole file and apply tests def read_quad(filename, nb_elec): output = numpy.loadtxt(filename, delimiter=" ",dtype=int) # load quadripole file # locate lines where the electrode index exceeds the maximum number of electrodes test_index_elec = numpy.array(numpy.where(output > 32)) # locate lines where an electrode is referred twice test_same_elec = find_identical_in_line(output) # if statement with exit cases (rajouter un else if pour le deuxième cas du ticket #2) if test_index_elec.size != 0: for i in range(len(test_index_elec[0,:])): print("Error: An electrode index at line "+ str(test_index_elec[0,i]+1)+" exceeds the maximum number of electrodes") sys.exit(1) elif len(test_same_elec) != 0: for i in range(len(test_same_elec)): print("Error: An electrode index is used twice at line " + str(test_same_elec[i]+1)) sys.exit(1) else: return output def read_temp(): f = open(device_file, 'r') lines = f.readlines() f.close() while lines[0].strip()[-3:] != 'YES': time.sleep(0.2) lines = read_temp_raw() equals_pos = lines[1].find('t=') if equals_pos != -1: temp_string = lines[1][equals_pos+2:] temp_c = float(temp_string) / 1000.0 return temp_c # perform a measurement def run_measurement(nb_stack, injection_deltat, Rref, coefp0, coefp1, coefp2, coefp3, elec_array): start_time=time.time() # inner variable initialization sum_I=0 sum_Vmn=0 sum_Ps=0 # injection courant and measure for n in range(0,3+2*nb_stack-1) : # current injection if (n % 2) == 0: GPIO.output(7, GPIO.HIGH) # polarity n°1 else: GPIO.output(7, GPIO.LOW) # polarity n°2 GPIO.output(8, GPIO.HIGH) # current injection start_delay=time.time() time.sleep(injection_deltat) # delay depending on current injection duration if n==0: Tx=AnalogIn(ads,ADS.P0).voltage Tab=AnalogIn(ads,ADS.P1).voltage for k in range(0,integer): meas[0,k] = AnalogIn(ads,ADS.P0).voltage # reading current value on ADS channel A0 meas[1,k] = AnalogIn(ads,ADS.P1).voltage meas[2,k] = AnalogIn(ads,ADS.P2).voltage # reading voltage value on ADS channel A2 meas[3,k] = AnalogIn(ads,ADS.P3).voltage # print(AnalogIn(ads,ADS.P0,ADS.P1).voltage) # time.sleep(1) GPIO.output(8, GPIO.LOW)# stop current injection end_delay=time.time() sum_I=sum_I+(((numpy.mean(meas[0,:])*coefp0)+offset_p0)-(((numpy.mean(meas[1,:])*coefp1)+offset_p1)))/Rref Vmn1= ((numpy.mean(meas[2,:])*(coefp2))+ offset_p2)-((numpy.mean(meas[3,:])*(coefp3))+offset_p3) if (n % 2) == 0: sum_Vmn=sum_Vmn-Vmn1 sum_Ps=sum_Ps+Vmn1 else: sum_Vmn=sum_Vmn+Vmn1 sum_Ps=sum_Ps+Vmn1 end_calc=time.time() time.sleep((end_delay-start_delay)-(end_calc-end_delay)) # return averaged values cpu= CPUTemperature() output = DataFrame({ "time":[datetime.now()], "A":elec_array[0], "B":elec_array[1], "M":elec_array[2], "N":elec_array[3], "Vmn [mV]":[(sum_Vmn/(3+2*nb_stack-1))*1000], "I [mA]":[(sum_I/(3+2*nb_stack-1))*1000], "R [ohm]":[( (sum_Vmn/(3+2*nb_stack-1)/(sum_I/(3+2*nb_stack-1))))], "Rab [KOhm]":[(Tab*2.47)/(sum_I/(3+2*nb_stack-1))/1000], "Tx [V]":[Tx*2.47], "Ps [mV]":[(sum_Ps/(3+2*nb_stack-1))*1000], "nbStack":[nb_stack], "CPU temp [°C]":[cpu.temperature], "Hardware temp [°C]":[read_temp()-8], "Time [S]":[(-start_time+time.time())] # "Rcontact[ohm]":[Rc], # "Rsoil[ohm]":[Rsoil], # "Rab_theory [Ohm]":[(Rc*2+Rsoil)] # Dead time equivalent to the duration of the current injection pulse }) output=output.round(1) print(output.to_string()) time.sleep(1) return output # save data def append_and_save(path, last_measurement): if os.path.isfile(path): # Load data file and append data to it with open(path, 'a') as f: last_measurement.to_csv(f, header=False) else: # create data file and add headers with open(path, 'a') as f: last_measurement.to_csv(f, header=True) """ Initialization of GPIO channels """ GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) """ Initialization of multiplexer channels """ # pinList = [12,16,20,21,26,18,23,24,25,19,6,13,4,17,27,22,10,9,11,5] # List of GPIOs enabled for relay cards (electrodes) # for i in pinList: # GPIO.setup(i, GPIO.OUT) # GPIO.output(i, GPIO.HIGH) """ Main loop """ N=read_quad("ABMN.txt",pardict.get("nb_electrodes")) # load quadripole file if N.ndim == 1: N = N.reshape(1, 4) for g in range(0,pardict.get("nbr_meas")): # for time-lapse monitoring for i in range(0,N.shape[0]): # loop over quadripoles # call the switch_mux function to switch to the right electrodes # switch_mux(N[i,]) # run a measurement current_measurement = run_measurement(pardict.get("stack"), pardict.get("injection_duration"), R_ref, coef_p0, coef_p1, coef_p2, coef_p3, N[i,]) # save data and print in a text file append_and_save(pardict.get("export_path"), current_measurement) # reset multiplexer channels # GPIO.output(12, GPIO.HIGH); GPIO.output(16, GPIO.HIGH); GPIO.output(20, GPIO.HIGH); GPIO.output(21, GPIO.HIGH); GPIO.output(26, GPIO.HIGH) # GPIO.output(18, GPIO.HIGH); GPIO.output(23, GPIO.HIGH); GPIO.output(24, GPIO.HIGH); GPIO.output(25, GPIO.HIGH); GPIO.output(19, GPIO.HIGH) # GPIO.output(6, GPIO.HIGH); GPIO.output(13, GPIO.HIGH); GPIO.output(4, GPIO.HIGH); GPIO.output(17, GPIO.HIGH); GPIO.output(27, GPIO.HIGH) # GPIO.output(22, GPIO.HIGH); GPIO.output(10, GPIO.HIGH); GPIO.output(9, GPIO.HIGH); GPIO.output(11, GPIO.HIGH); GPIO.output(5, GPIO.HIGH) time.sleep(pardict.get("sequence_delay")) #waiting next measurement (time-lapse)