import importlib import datetime import time import numpy as np from OhmPi.logging_setup import create_stdout_logger from OhmPi.config import HARDWARE_CONFIG from threading import Thread, Event controller_module = importlib.import_module(f'OhmPi.hardware.{HARDWARE_CONFIG["controller"]["model"]}') tx_module = importlib.import_module(f'OhmPi.hardware.{HARDWARE_CONFIG["tx"]["model"]}') rx_module = importlib.import_module(f'OhmPi.hardware.{HARDWARE_CONFIG["rx"]["model"]}') mux_module = importlib.import_module(f'OhmPi.hardware.{HARDWARE_CONFIG["mux"]["model"]}') TX_CONFIG = tx_module.TX_CONFIG RX_CONFIG = rx_module.RX_CONFIG MUX_CONFIG = mux_module.MUX_CONFIG current_max = np.min([TX_CONFIG['current_max'], MUX_CONFIG['current_max']]) voltage_max = np.min([TX_CONFIG['voltage_max'], MUX_CONFIG['voltage_max']]) voltage_min = RX_CONFIG['voltage_min'] def elapsed_seconds(start_time): lap = datetime.datetime.utcnow() - start_time return lap.total_seconds() class OhmPiHardware: def __init__(self, **kwargs): self.exec_logger = kwargs.pop('exec_logger', None) if self.exec_logger is None: self.exec_logger = create_stdout_logger('exec_hw') self.data_logger = kwargs.pop('exec_logger', None) if self.data_logger is None: self.data_logger = create_stdout_logger('data_hw') self.soh_logger = kwargs.pop('soh_logger', None) if self.soh_logger is None: self.soh_logger = create_stdout_logger('soh_hw') self.tx_sync = Event() self.controller = kwargs.pop('controller', controller_module.Controller(exec_logger=self.exec_logger, data_logger=self.data_logger, soh_logger= self.soh_logger)) self.rx = kwargs.pop('rx', rx_module.Rx(exec_logger=self.exec_logger, data_logger=self.data_logger, soh_logger=self.soh_logger)) self.tx = kwargs.pop('tx', tx_module.Tx(exec_logger=self.exec_logger, data_logger=self.data_logger, soh_logger=self.soh_logger)) self.mux = kwargs.pop('mux', mux_module.Mux(exec_logger=self.exec_logger, data_logger=self.data_logger, soh_logger=self.soh_logger)) self.readings = np.array([]) # time series of acquired data self._start_time = None # time of the beginning of a readings acquisition def _clear_values(self): self.readings = np.array([]) self._start_time = None def _inject(self, duration): self.tx_sync.set() self.tx.voltage_pulse(length=duration) self.tx_sync.clear() def _read_values(self, sampling_rate, append=False): # noqa if not append: self._clear_values() _readings = [] else: _readings = self.readings.tolist() sample = 0 self.tx_sync.wait() if not append or self._start_time is None: self._start_time = datetime.datetime.utcnow() while self.tx_sync.is_set(): lap = datetime.datetime.utcnow() _readings.append([elapsed_seconds(self._start_time), self.tx.current, self.rx.voltage, self.tx.polarity]) sample+=1 sleep_time = self._start_time + datetime.timedelta(seconds = sample * sampling_rate / 1000) - lap time.sleep(np.min([0, np.abs(sleep_time.total_seconds())])) self.readings = np.array(_readings) def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5, vab_max=voltage_max, vmn_min=voltage_min): """Estimates best Tx voltage based on different strategies. At first a half-cycle is made for a short duration with a fixed known voltage. This gives us Iab and Rab. We also measure Vmn. A constant c = vmn/iab is computed (only depends on geometric factor and ground resistivity, that doesn't change during a quadrupole). Then depending on the strategy, we compute which vab to inject to reach the minimum/maximum Iab current or min/max Vmn. This function also compute the polarity on Vmn (on which pin of the ADS1115 we need to measure Vmn to get the positive value). Parameters ---------- best_tx_injtime : float, optional Time in milliseconds for the half-cycle used to compute Rab. strategy : str, optional Either: - vmax : compute Vab to reach a maximum Iab without exceeding vab_max - vmin : compute Vab to reach at least vmn_min - constant : apply given Vab tx_volt : float, optional Voltage to apply for guessing the best voltage. 5 V applied by default. If strategy "constant" is chosen, constant voltage to applied is "tx_volt". vab_max : float, optional Maximum injection voltage to apply to tx (used by all strategies) vmn_min : float, optional Minimum voltage target for rx (used by vmin strategy) Returns ------- vab : float Proposed Vab according to the given strategy. polarity: Polarity of VMN relative to polarity of VAB rab : float Resistance between injection electrodes """ vab_max = np.abs(vab_max) vmn_min = np.abs(vmn_min) vab = np.min([np.abs(tx_volt), vab_max]) self.tx.polarity = 1 self.tx.turn_on() if self.rx.sampling_rate*1000 > best_tx_injtime: sampling_rate = best_tx_injtime else: sampling_rate = self.tx.sampling_rate self._vab_pulse(vab=vab, length=best_tx_injtime, sampling_rate=sampling_rate) vmn = np.mean(self.readings[:,2]) iab = np.mean(self.readings[:,1]) # if np.abs(vmn) is too small (smaller than voltage_min), strategy is not constant and vab < vab_max , # then we could call _compute_tx_volt with a tx_volt increased to np.min([vab_max, tx_volt*2.]) for example if strategy == 'vmax': # implement different strategies if vab < vab_max and iab < current_max : vab = vab * np.min([0.9 * vab_max / vab, 0.9 * current_max / iab]) # TODO: check if setting at 90% of max as a safety margin is OK self.tx.exec_logger.debug(f'vmax strategy: setting VAB to {vab} V.') elif strategy == 'vmin': if vab <= vab_max and iab < current_max: vab = vab * np.min([0.9 * vab_max / vab, vmn_min / np.abs(vmn), 0.9 * current_max / iab]) # TODO: check if setting at 90% of max as a safety margin is OK elif strategy != 'constant': self.tx.exec_logger.warning(f'Unknown strategy {strategy} for setting VAB! Using {vab} V') else: self.tx.exec_logger.debug(f'Constant strategy for setting VAB, using {vab} V') self.tx.turn_off() self.tx.polarity = 0 rab = (np.abs(vab) * 1000.) / iab self.exec_logger.debug(f'RAB = {rab:.2f} Ohms') if vmn < 0: polarity = -1 # TODO: check if we really need to return polarity else: polarity = 1 return vab, polarity, rab def vab_square_wave(self, vab, cycle_length, sampling_rate, cycles=3, polarity=1, append=False): self.tx.polarity = polarity lengths = [cycle_length/2]*2*cycles # TODO: delete me print(f'vab_square_wave lengths: {lengths}') self._vab_pulses(vab, lengths, sampling_rate, append=append) def _vab_pulse(self, vab, length, sampling_rate=None, polarity=None, append=False): """ Gets VMN and IAB from a single voltage pulse """ if sampling_rate is None: sampling_rate = RX_CONFIG['sampling_rate'] if polarity is not None and polarity != self.tx.polarity: self.tx.polarity = polarity self.tx.voltage = vab injection = Thread(target=self._inject, kwargs={'duration':length}) readings = Thread(target=self._read_values, kwargs={'sampling_rate': sampling_rate, 'append': append}) # set gains automatically self.tx.adc_gain_auto() self.rx.adc_gain_auto() readings.start() injection.start() readings.join() injection.join() def _vab_pulses(self, vab, lengths, sampling_rate, polarities=None, append=False): n_pulses = len(lengths) if sampling_rate is None: sampling_rate = RX_CONFIG['sampling_rate'] if polarities is not None: assert len(polarities)==n_pulses else: polarities = [-self.tx.polarity * np.heaviside(i % 2, -1.) for i in range(n_pulses)] if not append: self._clear_values() print(f'Polarities: {polarities}, sampling_rate: {sampling_rate}') # TODO: delete me for i in range(n_pulses): self._vab_pulse(self, length=lengths[i], sampling_rate=sampling_rate, polarity=polarities[i], append=True)