diff --git a/geonet_gradient_selected.py b/geonet_gradient_selected.py index bb2a4f4a58437519946884f52460e045a893d5b3..ee5b296bb09f91352d4adfcae473540e181ded48 100644 --- a/geonet_gradient_selected.py +++ b/geonet_gradient_selected.py @@ -11,14 +11,15 @@ from collections import OrderedDict import matplotlib as mpl #shapefile = "D:\\Mes Donnees\\Land Matrix\\Shapefile\\" from mpl_toolkits.axes_grid1 import make_axes_locatable -from geopandas import GeoDataFrame from descartes import PolygonPatch +from scalebar import north_arrow +import os #dataset_name = 'mines' #dataset_name = "agriculture+biofuel" dataset_name = "global" -selected_iso = "USA" +selected_iso = "BRA" direction=['in','out','both'] @@ -28,11 +29,22 @@ degrees = ['in', 'out','inout'] degree = degrees[2] -path = ".\\data_net\\net_%s_surf_inOperation.ncol" % dataset_name +#path = ".\\data_net\\net_%s_surf_inOperation.ncol" % dataset_name + + +#path_d = ".\\data_net\\ids_to_countries_%s_inOperation.csv" % dataset_name + +os.chdir("D:\\Mes Donnees\\Land Matrix\\_LURKER\\net\\") + +degrees = ['in', 'out','inout','inout_num'] + +path_iso = "ISO country.xlsx" + +path_d ="ids_to_countries_global_07072021_inOperation.csv" +path = "net_global_07072021_inOperation.ncol" graph = nx.read_edgelist(path, delimiter=';', create_using=nx.DiGraph(), nodetype=int, data=(('weight', int),)) -path_d = ".\\data_net\\ids_to_countries_%s_inOperation.csv" % dataset_name names_dict = {} coord = {} @@ -40,7 +52,9 @@ lat = [] long = [] -fc = open(".\\data_net\\countries_to_coord_allTransnational.csv", 'r') +#fc = open(".\\data_net\\countries_to_coord_allTransnational.csv", 'r') +fc = open("countries_to_coord_allTransnational.csv", 'r') + for line in fc: vals=line.split(';') coord[vals[0]] = (float(vals[1]), float(vals[2].strip())) @@ -83,8 +97,8 @@ for id in names_dict: pos[int(id)]=(coord[names_dict[id]][1],coord[names_dict[id]][0]) -path_iso = ".\\data_net\\ISO country.xlsx" -iso = pd.read_excel(path_iso, index_col=0, sep=';') +path_iso = "ISO country.xlsx" +iso = pd.read_excel(path_iso, index_col=0) iso_dict = {} inv_iso_dict= {} @@ -131,6 +145,9 @@ ax.coastlines() #ax.set_extent([-90, -180, 90, 180]) ax.set_global() +north_arrow(ax, (0.1,0.2), 500) + + #backround image #si = ax.stock_img() #si.set_zorder(-1) @@ -285,7 +302,9 @@ pc.set_array(norm(list(score.values()))) #cax = divider.append_axes("right", size="5%", pad=0.05) #plt.colorbar(pc,fraction=0.046, pad=0.05) -plt.colorbar(pc,fraction=0.023, pad=0.05) +cb = plt.colorbar(pc,fraction=0.023, pad=0.05) +cb.ax.tick_params(labelsize=20) + #ax.set_axis_off() plt.tight_layout() @@ -309,7 +328,7 @@ nx.draw_networkx(graph, ax=ax, """ -plt.savefig("map_inout_%s_%s.pdf" % (dataset_name,selected_iso), format="pdf", dpi=300) +#plt.savefig("map_inout_%s_%s_test.pdf" % (dataset_name,selected_iso), format="pdf", dpi=300) -#plt.show() +plt.show()