diff --git a/src/.svn/entries b/src/.svn/entries new file mode 100644 index 0000000000000000000000000000000000000000..a38a045d1debc3dfb1545cb73f90b323eb62a086 --- /dev/null +++ b/src/.svn/entries @@ -0,0 +1,28 @@ +10 + +dir +0 +http://trac.clermont.cemagref.fr/svn/PRIMA/AmiThreat1/src +http://trac.clermont.cemagref.fr/svn/PRIMA +add + + + + + + + +svn:special svn:externals svn:needs-lock + + + + + + + + + + + +6a2e9def-b413-4168-a192-dec410e7e464 + diff --git a/src/Agent.java b/src/Agent.java new file mode 100644 index 0000000000000000000000000000000000000000..cacc0a0d34b796d27e3fdd803ea80e5e67b91af8 --- /dev/null +++ b/src/Agent.java @@ -0,0 +1,383 @@ +/* + * To change this license header, choose License Headers in Project Properties. + * To change this template file, choose Tools | Templates + * and open the template in the editor. + */ + +import java.util.ArrayList; +import java.util.Arrays; + +/** + * + * @author Sylvie.huet + */ +public class Agent { + + int nbAgentThisType; + + double distAutruiInit; + + int id = -1; + + CulturalWorldView[] myCulture; //initialisées dans ordre lecture fichier : muslims, christians, areligious + + CulturalWorldView[] myCultureInit; + + int nbWorldView; + + float alpha; + + float[] opinionGlobalOnOthers; + double[] opinionOnOtherAgents; + double[] previousOpinionOnOtherAgents; + + double opOfTheExtremistOnIt; + + ResistingHostility pop; + + String type; // agressor or victim for message agent + String group; // areligious, muslims or christians + String openness; // inclusive or exclusive + + float partInGroup; // part of this agent in the group (taux d'inclusif ou d'exclusif) + + // Constructeur inutile pour permettre une initialisation provisoire + public Agent() { + } + + public Agent(ResistingHostility me, int type, int id, String[] name, float[] adherence, float[] alow, float[] amax, int nbAgents, float alpha, int dimAdhesion, int nb) { + this.nbAgentThisType = nb; + this.id = id; + this.pop = me; + this.opinionGlobalOnOthers = new float[nbAgents]; + this.distAutruiInit = 0.0; + opinionOnOtherAgents = new double[6]; + previousOpinionOnOtherAgents = new double[6]; + Arrays.fill(opinionOnOtherAgents, 0.0); + Arrays.fill(previousOpinionOnOtherAgents, 0.0); + if (type == 1) { + this.type = "inclusive"; + } else { + this.type = "exclusive"; + } + this.group = groupFromDimAdh(dimAdhesion); + Arrays.fill(opinionGlobalOnOthers, 0.0f); + this.nbWorldView = name.length; + this.alpha = alpha; + myCulture = new CulturalWorldView[nbWorldView]; + myCultureInit = new CulturalWorldView[nbWorldView]; + for (int i = 0; i < nbWorldView; i++) { // initialisées dans ordre lecture fichier : muslims, christians, areligious + myCulture[i] = new CulturalWorldView(name[i], adherence[i], alow[i], amax[i]); + myCultureInit[i] = new CulturalWorldView(name[i], adherence[i], alow[i], amax[i]); + } + } + + // This is the agent constructor for the source + public Agent(ResistingHostility me, String type, float[] adherence, float[] alow, float[] amax, float alpha, int dimAdhesion, int nb) { + this.nbAgentThisType = nb; + this.distAutruiInit = 0.0; + this.type = type; + this.pop = me; + this.group = groupFromDimAdh(dimAdhesion); + this.nbWorldView = adherence.length; + this.alpha = alpha; + myCulture = new CulturalWorldView[nbWorldView]; + myCultureInit = new CulturalWorldView[nbWorldView]; + for (int i = 0; i < nbWorldView; i++) { + myCulture[i] = new CulturalWorldView(type, adherence[i], alow[i], amax[i]); + myCultureInit[i] = new CulturalWorldView(type, adherence[i], alow[i], amax[i]); + } + } + + // This is the agent for generating relevant CWW + public Agent(String openness, float[] adherence, float[] alow, float[] amax, float alpha, int nb) { + this.nbAgentThisType = nb; + this.distAutruiInit = 0.0; + this.type = type; + this.openness = openness; + //this.pop = me; + this.nbWorldView = adherence.length; + this.alpha = alpha; + myCulture = new CulturalWorldView[nbWorldView]; + for (int i = 0; i < nbWorldView; i++) { + myCulture[i] = new CulturalWorldView(type, adherence[i], alow[i], amax[i]); + } + } + + public Agent(String group, String openness, float representativity, float[] adherence, float[] alow, float[] amax, float alpha, int nb) { + this.nbAgentThisType = nb; + this.distAutruiInit = 0.0; + this.group = group; + this.openness = openness; + this.partInGroup = representativity; + this.nbWorldView = adherence.length; + this.alpha = alpha; + myCulture = new CulturalWorldView[nbWorldView]; + for (int i = 0; i < nbWorldView; i++) { + myCulture[i] = new CulturalWorldView(type, adherence[i], alow[i], amax[i]); + } + } + + // This is the agent for generating relevant CWW + public Agent(Agent A) { + this.nbAgentThisType = A.nbAgentThisType; + this.distAutruiInit = A.distAutruiInit; + this.group = A.group; + this.openness = A.openness; + this.partInGroup = A.partInGroup; + //this.pop = me; + this.nbWorldView = A.nbWorldView; + this.alpha = A.alpha; + myCulture = new CulturalWorldView[nbWorldView]; + float[] adherence = new float[nbWorldView]; + float[] alow = new float[nbWorldView]; + float[] amax = new float[nbWorldView]; + for (int i = 0; i < nbWorldView; i++) { + adherence[i] = A.myCulture[i].maPosition; + alow[i] = A.myCulture[i].alow; + amax[i] = A.myCulture[i].amax; + } + for (int i = 0; i < nbWorldView; i++) { + myCulture[i] = new CulturalWorldView(type, adherence[i], alow[i], amax[i]); + } + } + + public double computeOpinionOnOtherMAPosition(float ad, CulturalWorldView c) { + double w = 0.0f; // opinion about another agent's maPosition at the cultural worldview k + double temp = 0; + if (ad == c.maPosition) { + ad = ad + 0.000001f; + } + try { + if ((ad < c.amax) && (ad > c.alow)) { + w = 1.0; + } else if (ad <= c.alow) { + temp = Math.exp(1 + ((ad - c.maPosition) / (c.maPosition - c.alow))); + w = (float) ((temp - 1) / (temp + 1)); + } else if (ad >= c.amax) { + temp = Math.exp(1 + ((c.maPosition - ad) / (c.amax - c.maPosition))); + w = (float) ((temp - 1) / (temp + 1)); + } + if (Double.isNaN(w)) { + throw new Exception(" w is not a number " + c.alow + " " + c.maPosition + " " + c.amax + " ad " + ad + " w = " + w); + } + + } catch (Exception error) { + error.printStackTrace(); + } + return w; + } + + public double computeOpinionOnOtherMAPosition(float ad, CulturalWorldView c, boolean show) { + double w = 0.0f; // opinion about another agent's maPosition at the cultural worldview k + double temp = 0; + if (ad == c.maPosition) { + ad = ad + 0.000001f; + } + try { + if ((ad < c.amax) && (ad > c.alow)) { + w = 1.0; + } else if (ad <= c.alow) { + temp = Math.exp(1 + ((ad - c.maPosition) / (c.maPosition - c.alow))); + w = (float) ((temp - 1) / (temp + 1)); + } else if (ad >= c.amax) { + temp = Math.exp(1 + ((c.maPosition - ad) / (c.amax - c.maPosition))); + w = (float) ((temp - 1) / (temp + 1)); + } + if (Double.isNaN(w)) { + throw new Exception(" w is not a number " + c.alow + " " + c.maPosition + " " + c.amax + " ad " + ad + " w = " + w); + } + if (show) { + System.err.print(" dot " + ad + " jugeur " + c.alow + " " + c.maPosition + " " + c.amax + " w = " + w + " "); + } + } catch (Exception error) { + error.printStackTrace(); + } + return w; + } + + public double opinionOnOthers(Agent A) { + double opTot = 0.0f; + double opIJ = 0.0f; + for (int i = 0; i < nbWorldView; i++) { + opIJ = opinionAboutOtherAgentForOneCWW(myCulture[i], A.myCulture[i], pop.nbPoints); + opTot = opTot + opIJ; + } + return opTot / (float) nbWorldView; + } + + public double opinionOnOthers(Agent A, int nbPoints) { + double opTot = 0.0f; + double opIJ = 0.0f; + for (int i = 0; i < nbWorldView; i++) { + opIJ = opinionAboutOtherAgentForOneCWW(myCulture[i], A.myCulture[i], nbPoints); + opTot = opTot + opIJ; + } + return opTot / (float) nbWorldView; + } + + public double opinionOnOthers(Agent A, boolean notfromInitState) { + // I have changed but I don't know the other has changed + double opTot = 0.0f; + double opIJ = 0.0f; + for (int i = 0; i < nbWorldView; i++) { + if (notfromInitState) { + opIJ = opinionAboutOtherAgentForOneCWW(myCulture[i], A.myCulture[i], pop.nbPoints); + } else if ((A.group.equalsIgnoreCase(this.group)) && (A.type.equalsIgnoreCase(this.type))) { + opIJ = opinionAboutOtherAgentForOneCWW(myCulture[i], myCulture[i], pop.nbPoints); + } else { + opIJ = opinionAboutOtherAgentForOneCWW(myCulture[i], A.myCultureInit[i], pop.nbPoints); + } + opTot = opTot + opIJ; + } + return opTot / (double) nbWorldView; + } + + public double opinionAboutOtherAgentForOneCWW(CulturalWorldView cI, CulturalWorldView cJ, int nbPoints) { // an agent's J cultural worldview + double opI = 0.0f; + double temp = 0.0f; + float[] op = sampleTolSegmentFromGrid(nbPoints, cJ); + for (int i = 0; i < op.length; i++) { + opI = computeOpinionOnOtherMAPosition(op[i], cI); + temp = temp + opI; + } + temp = temp / (double) op.length; + return temp; + } + + public double opinionAboutOtherAgentForOneCWW(CulturalWorldView cI, CulturalWorldView cJ, int nbPoints, boolean show) { // an agent's J cultural worldview + double opI = 0.0f; + double temp = 0.0f; + float[] op = sampleTolSegmentFromGrid(nbPoints, cJ); + for (int i = 0; i < op.length; i++) { + opI = Agent.this.computeOpinionOnOtherMAPosition(op[i], cI, show); + temp = temp + opI; + } + temp = temp / (double) op.length; + return temp; + } + + public float[] sampleTolSegmentBugged(int nbPoints, CulturalWorldView cJ) { + float[] s = new float[nbPoints]; + // we sample starting from the maPosition of the sampling segment and picked out the same number of point on the left and on the right + int countP = 0; + if (nbPoints % 2 == 1) { // nb Points est impair + // a first sampled point at the maPosition value + s[countP] = 1.0f; // by construction + countP++; + nbPoints = nbPoints - 1; + } + nbPoints = nbPoints / 2; + // sampling on the right side + float dist = cJ.amax - cJ.maPosition; + float interv = dist / (float) (nbPoints); + float depart = cJ.maPosition + (0.5f * interv); + for (int i = 0; i < nbPoints; i++) { + s[countP] = depart + (float) i * interv; + countP++; + } + // sampling on the left side + dist = cJ.maPosition - cJ.alow; + interv = dist / (float) (nbPoints); + depart = cJ.alow + (0.5f * interv); + for (int i = 0; i < nbPoints; i++) { + s[countP] = depart + (float) i * interv; + countP++; + } + return s; + } + + public float[] sampleTolSegment(int nbPoints, CulturalWorldView cJ) { + float dist = cJ.amax - cJ.alow; + float interv = dist / (float) (nbPoints); + float depart = cJ.alow + (0.5f * interv); + float[] s = new float[nbPoints]; + for (int i = 0; i < nbPoints; i++) { + s[i] = depart + (float) i * interv; + } + return s; + } + + public float[] sampleTolSegmentFromGrid(int nbPoints, CulturalWorldView cJ) { // allow to approximate the segment using always the same dots for everyone + float interv = 2.0f / (float) (nbPoints); // this is constant + float depart = -1.0f; + float gridDot = -1.0f; + float reserv = -1.0f; + for (int i = 0; i <= nbPoints; i++) { + gridDot = depart + (float) i * interv; + if (gridDot > cJ.alow) { // we take the closer in the segment + depart = gridDot; + reserv = gridDot - interv; + i = nbPoints + 1; + } + } + ArrayList<Float> points = new ArrayList<Float>(); + float gridPoint = 0.0f; + for (int i = 0; i <= nbPoints; i++) { + gridPoint = depart + (float) i * interv; + if (gridPoint <= cJ.amax) { + points.add(gridPoint); + } else { + i = nbPoints + 1; + } + } + float[] s; + if (points.size() > 0) { + s = new float[points.size()]; + for (int i = 0; i < points.size(); i++) { + s[i] = points.get(i).floatValue(); + } + } else { + s = new float[1]; + s[0] = reserv; + } + return s; + } + + public void reactionToMessage(int type, Agent emetteur) { + reactionToThreatMessageOneDim(emetteur); + } + + public void reactionToThreatMessageOneDim(Agent emetteur) { + // I (this) compute what the "emetteur" think of me + opOfTheExtremistOnIt = emetteur.opinionOnOthers(this); + int dimToChange = emetteur.mainDimension(); + if (opOfTheExtremistOnIt < 0.0f) { + float mu = alpha * (float) ((Math.exp(opOfTheExtremistOnIt) - 1) / (Math.exp(opOfTheExtremistOnIt) + 1)); + myCulture[dimToChange].changeBoundIfThreat(mu, emetteur.myCulture[dimToChange].maPosition, pop.epsilon); + } + } + + public int mainDimension() { + int dim = 0; + float adherMax = Float.MIN_VALUE; + for (int i = 0; i < myCulture.length; i++) { + if (myCulture[i].maPosition > adherMax) { + adherMax = myCulture[i].maPosition; + dim = i; + } + } + return dim; + } + + public int mainCWWFromGroup() { + int cww = 0; // muslims + if (this.group.equals(new String("areligious"))) { + cww = 2; + } else if (this.group.equals(new String("christians"))) { + cww = 1; + } + return cww; + } + + // + public String groupFromDimAdh(int dimAdhesion) { + String g = new String("muslims"); + if (dimAdhesion == 2) { + g = new String("areligious"); + } else if (dimAdhesion == 1) { + g = new String("christians"); + } + return g; + } +} diff --git a/src/CulturalWorldView.java b/src/CulturalWorldView.java new file mode 100644 index 0000000000000000000000000000000000000000..c8d66782e6efe8a53850fb2117de63f08446e252 --- /dev/null +++ b/src/CulturalWorldView.java @@ -0,0 +1,59 @@ +/* + * To change this license header, choose License Headers in Project Properties. + * To change this template file, choose Tools | Templates + * and open the template in the editor. + */ + +/** + * + * @author Sylvie.huet + */ +public class CulturalWorldView { + + //We consider a population of N agents, each agent i has an identity first defined by 3 values + // between -1 and +1, corresponding to its maPosition or rejection of a cultural world view. + // Agent's cultural worldviews: A positive value expresses maPosition while a negative one expresses rejection. + // The absolute value expresses the intensity of the maPosition of rejection. + // Tolerance: the agent is also defined by tolerance limits above and below this maPosition or rejection values. + float maPosition; + float alow; + float amax; + float exAmax ; + String name; + + public CulturalWorldView(String name, float adherence, float alow, float amax) { + this.name = name; + this.maPosition = adherence; + this.alow = alow; + this.amax = amax; + if (Math.abs(adherence - amax) < 0.0000001f) { this.amax = adherence+0.00001f ; } // pour résoudre problème d'encodage de m.... + if (Math.abs(adherence - alow) < 0.0000001f) { this.alow = adherence-0.00001f ; } + } + + public void changeBoundIfThreat(float mu, float adherenceSource, float epsilon) { + exAmax = amax ; + float base = 0.0f; + float dist1 = Math.abs(adherenceSource - alow); + float dist2 = Math.abs(adherenceSource - amax); + float newBound = 0.0f; + if (dist1 < dist2) { + base = alow; + } else { + base = amax; + } + if (dist1 == dist2) { + if (Math.random() < 0.5) { + base = alow; + } else { + base = amax; + } + } + newBound = base + mu * (base - maPosition - epsilon * (Math.abs(base - maPosition) / (base - maPosition))); + if (base == alow) { + alow = newBound; + } else { + amax = newBound; + } + } + +} diff --git a/src/DoubleCollectionIterator.java b/src/DoubleCollectionIterator.java new file mode 100644 index 0000000000000000000000000000000000000000..89fb18aa958edbe9c81f14422361a416419286f7 --- /dev/null +++ b/src/DoubleCollectionIterator.java @@ -0,0 +1,91 @@ +/* + * Copyright (C) 2010 Cemagref + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + + + +import java.util.List; + +/** + * Utility classes for iterating on an array of Double, double, Float or float + * for retrieving a double value. + * + * @author Nicolas Dumoulin <nicolas.dumoulin@cemagref.fr> + */ +public interface DoubleCollectionIterator<T> { + + public double get(T array, int index); + + public int size(T array); + public final static DoubleCollectionIterator<List<Double>> fromDoubleClassList = new DoubleCollectionIterator<List<Double>>() { + + @Override + public double get(List<Double> array, int index) { + return array.get(index); + } + + @Override + public int size(List<Double> array) { + return array.size(); + } + }; + + abstract static class DoubleArrayIterator<T> implements DoubleCollectionIterator<T> { + + @Override + public int size(T array) { + return ((Object[]) array).length; + } + } + public final static DoubleCollectionIterator<Double[]> fromDoubleClass = new DoubleArrayIterator<Double[]>() { + + @Override + public double get(Double[] array, int index) { + return array[index]; + } + }; + public final static DoubleCollectionIterator<double[]> fromDoublePrimitive = new DoubleArrayIterator<double[]>() { + + @Override + public double get(double[] array, int index) { + return array[index]; + } + + @Override + public int size(double[] array) { + return array.length; + } + }; + public final static DoubleCollectionIterator<Float[]> fromFloatClass = new DoubleArrayIterator<Float[]>() { + + @Override + public double get(Float[] array, int index) { + return array[index]; + } + }; + public final static DoubleCollectionIterator<float[]> fromFloatPrimitive = new DoubleArrayIterator<float[]>() { + + @Override + public double get(float[] array, int index) { + return array[index]; + } + + @Override + public int size(float[] array) { + return array.length; + } + }; +} diff --git a/src/Message.java b/src/Message.java new file mode 100644 index 0000000000000000000000000000000000000000..0d00f0f482621682cfd557d4885f6415aac3cdba --- /dev/null +++ b/src/Message.java @@ -0,0 +1,29 @@ +/* + * To change this license header, choose License Headers in Project Properties. + * To change this template file, choose Tools | Templates + * and open the template in the editor. + */ + + + +/** + * + * @author sylvie.huet + */ +public class Message { + + int time ; // iteration at which the message is delivered + + int type ; // 1 = threat ; 2 = compassion + + Agent emetteur ; // id of the agent threatening the other agent or being a victim (possibly benefiting from compassion + + public Message(int time, int type, Agent emetteur) { + this.time = time ; + this.type = type; + this.emetteur = emetteur; + } + + + +} diff --git a/src/ProcessingException.java b/src/ProcessingException.java new file mode 100644 index 0000000000000000000000000000000000000000..dc4afa3c4dc256d7e0f042b0945013a854f01760 --- /dev/null +++ b/src/ProcessingException.java @@ -0,0 +1,41 @@ +/* + * Copyright (C) 2010 Cemagref + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + + + +/** + * Exception that can be thrown while processing an event and + * encountering some errors. + * + * @author Nicolas Dumoulin <nicolas.dumoulin@cemagref.fr> + */ +public class ProcessingException extends Exception { + + public ProcessingException(Throwable cause) { + super(cause); + } + + public ProcessingException(String message, Throwable cause) { + super(message, cause); + } + + public ProcessingException(String message) { + super(message); + } + + +} diff --git a/src/Random.java b/src/Random.java new file mode 100644 index 0000000000000000000000000000000000000000..1874afa5543a69b638abe1d908db548c52c9e76f --- /dev/null +++ b/src/Random.java @@ -0,0 +1,249 @@ +/* + * Copyright (C) 2010 Cemagref + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + + + +import java.util.ArrayList; +import java.util.Iterator; +import java.util.List; +import java.util.SortedMap; +import umontreal.iro.lecuyer.probdist.ExponentialDistFromMean; +import umontreal.iro.lecuyer.randvar.ExponentialGen; +import umontreal.iro.lecuyer.randvar.NormalGen; +import umontreal.iro.lecuyer.randvar.RandomVariateGen; +import umontreal.iro.lecuyer.rng.MRG32k3a; +import umontreal.iro.lecuyer.rng.RandomPermutation; + +/** + * @author Nicolas Dumoulin <nicolas.dumoulin@cemagref.fr> + * @author sylvie.huet + */ +public class Random { + + private MRG32k3a randomStream; + + /** + * This method returns an integer picked out following a Uniform law between i and i1. The values i and i1 are included (can be picked out) + */ + public int nextInt(int i, int i1) { + return randomStream.nextInt(i, i1); + } + + /** + * This method returns a double picked out following a Uniform law between 0 and 1 with 0 and 1 excluded (can't be picked out) + */ + public double nextDouble() { + return randomStream.nextDouble(); + } + + public int nextIndexWithDistribution(float[] distribution) { + return nextIndexWithDistribution(distribution, DoubleCollectionIterator.fromFloatPrimitive); + } + + public int nextIndexWithDistribution(Double[] distribution) { + return nextIndexWithDistribution(distribution, DoubleCollectionIterator.fromDoubleClass); + } + + public int nextIndexWithDistribution(List<Double> distribution) { + return nextIndexWithDistribution(distribution, DoubleCollectionIterator.fromDoubleClassList); + } + + /** + * Picks out randomly an object in the given list. + * @param <T> + * @param objects + * @return + */ + public <T> T nextObject(List<T> objects) { + return nextObject(objects, false); + } + + /** + * Picks out randomly an object in the given list. + * @param <T> + * @param objects + * @param remove if true, the returned object is removed from the list + * @return null if the list is null or empty. + */ + public <T> T nextObject(List<T> objects, boolean remove) { + if (objects == null || objects.isEmpty()) { + return null; + } + if (remove) { + return objects.remove(nextInt(0, objects.size() - 1)); + } else { + return objects.get(nextInt(0, objects.size() - 1)); + } + } + + /** + * Pick out an object in the values of a map, according to the probilities stored in the keys + */ + public <T> T nextMapObjectWithDistributionInKeys(SortedMap<Double, T> map) { + double rando = nextDouble(); + double value = map.firstKey(); + Iterator<Double> keysIterator = map.keySet().iterator(); + double sum = keysIterator.next(); + while (keysIterator.hasNext()) { + sum += value; + if (sum >= rando) { + break; + } + value = keysIterator.next(); + } + return map.get(value); + } + + public int nextIndexWithDistribution(double[] distribution) { + return nextIndexWithDistribution(distribution, DoubleCollectionIterator.fromDoublePrimitive); + } + + /** + * Pick an index in an array covered by a distribution (non-cumulative). If the sum + * of probabilities is less than 1, it may occur that the random index is out of the + * given probabilities. In this case, the last index is returned. + * + * @param distribution + * @return the selected index or -1 if out of distribution. + */ + public <T> int nextIndexWithDistribution(T distribution, DoubleCollectionIterator<T> iterator) { + double rando = nextDouble(); + int index = 0; + double sum = iterator.get(distribution, index); + while (rando > sum) { + index++; + if (index == iterator.size(distribution)) { + break; + } + sum += iterator.get(distribution, index); + } + if (index == iterator.size(distribution)) { + // return the last index + index--; + } + + return index; + } + + /** + * Use this method to initialize a generator based on a statistical distribution. + * For example, this code create a generator from a normal distribution: + * <p><code>NormalGen normalGenerator = new NormalACRGen(null, 0, 1);<br/> + * Random.setRandomStreamInDist(normalGenerator); + * </code></p> + * @param rvg The distribution-based generator to initialize + */ + public void setRandomStreamInDist(RandomVariateGen rvg) { + rvg.setStream(randomStream); + } + + /** + * This method return a random order for a sequence of + * leng numbers. + */ + public int[] randomList(int leng) { + int[] vec = new int[leng]; + for (int i = 0; i < leng; i++) { + vec[i] = i; + } + RandomPermutation.shuffle(vec, randomStream); + return vec; + } + + public String getSeedToString() { + StringBuilder buff = new StringBuilder(); + for (long val : randomStream.getState()) { + buff.append(val); + buff.append(" "); + } + return buff.toString(); + // this code make troubles in exception stacktrace formatting (don't know why…) + //return Arrays.toString(randomStream.getState()); + } + + /** + * This method should only be called by the simulation starter. + * The initial status for the RNG is initialized by the simulator at startup. + * @param seed + */ + public void setSeed(long[] seed) throws ProcessingException { + if (randomStream != null) { + throw new ProcessingException("Trying to reinit the seed of the RNG although it is already initialized!"); + } + randomStream = new MRG32k3a(); + randomStream.setSeed(seed); + } + + public ExponentialGen createExponentialGenFromMean(float mean) { + return new ExponentialGen(randomStream, new ExponentialDistFromMean(mean)); + } + + /** + * Pick out a float following a Normal law + */ + public float pickOutNormalLaw(float m, float std) { + return (float) NormalGen.nextDouble(randomStream, m, std); + } + + public double pickOutNormalLaw(double m, double std) { + return NormalGen.nextDouble(randomStream, m, std); + } + + /** + * Randomly permutes list. This method permutes the whole list. + * @param list the list to process + */ + public void shuffle(List list) { + RandomPermutation.shuffle(list, randomStream); + } + + /** + * Picks randomly some elements from a list. + * @param <E> + * @param list + * @param nb the number of elements to pick out + * @return null, if nb <= 0 + */ + public <E> List<E> pickElements(List<E> list, int nb) { + if (nb <= 0) { + return null; + } + List<E> result = new ArrayList<E>(nb); + List<E> copy = new ArrayList<E>(list); + for (int i = 0; i < nb; i++) { + int index = nextInt(0, copy.size() - 1); + result.add(copy.remove(index)); + } + return result; + } + + /** + * Build an array of indexes for randomly picking elements in a matrix. + * @param elements + * @return an array of two-dimensional indexes + */ + public List<int[]> buildRandomMatrixIndexes(Object[][] elements) { + List<int[]> indexes = new ArrayList<int[]>(); + for (int i = 0; i < elements.length; i++) { + for (int j = 0; j < elements[i].length; j++) { + indexes.add(new int[]{i, j}); + } + } + shuffle(indexes); + return indexes; + } +} diff --git a/src/ResistingHostility.java b/src/ResistingHostility.java new file mode 100644 index 0000000000000000000000000000000000000000..ce2d3820e1d6253aa87bbb7088288fb9d83865b4 --- /dev/null +++ b/src/ResistingHostility.java @@ -0,0 +1,823 @@ +/* + * To change this license header, choose License Headers in Project Properties. + * To change this template file, choose Tools | Templates + * and open the template in the editor. + */ + +import java.util.ArrayList; +import java.util.Arrays; +import java.util.List; + +/** + * + * @author Sylvie.huet + */ +public class ResistingHostility { + + /** + * @param args the command line arguments + */ + List<Message> messages; + Agent[] population; + static int nbWorldView; + int nbPoints; // nbPoints to sample in j's tolerance segment to define the opinions of i about j + int nbIter; + float epsilon; // min possible tolerance + float alpha; // Parametre + int inclusifs; + int exclusifs; + int nbMessages; + float partExclusive; + static Random myRand; + int iteration; + static Tools myPop; // reader of the entering files + static float[] parametres; + + public int getIteration() { + return iteration; + } + int source; // for the message + String messageFile; + String nomExpe; + static String popFile; + static boolean expeFini; + static float randomized; // this is to change slightly and randomly the entering cultural worldviews pattern of agents + static int sizePop; + + public static void main(String[] args) { + // parameters by default + int outputType = 0; // meaning the output is average values of attitudes over the population (1 means details for each agent type) + popFile = new String("expDesign.xls"); + String nameFileResults = new String("globalResultsAVG.csv"); + sizePop = 1000; + int nbRepliques = 1; // 1 suffit dans le cas ou pop init pas random car pas d'heuristique de rencontre + float alpha = 0.5f; + float epsilon = 0.000001f; + int nbPoint = 400; + nbWorldView = 3; + randomized = 0.0f; // allow to vary slightly the agents (if equal to 0, the agents are only defined by the initialisation from the file) + // parameters of the user if they are given + if (args.length > 0) { + outputType = new Integer(args[0]).intValue(); + nameFileResults = args[1]; + popFile = args[2]; + sizePop = new Integer(args[3]).intValue();; + nbRepliques = new Integer(args[4]).intValue();; // 1 suffit dans le cas ou pop init pas random car pas d'heuristique de rencontre + alpha = new Float(args[5]).floatValue(); + epsilon = new Float(args[6]).floatValue(); + nbPoint = new Integer(args[7]).intValue();; + nbWorldView = new Integer(args[8]).intValue();; + randomized = new Float(args[9]).floatValue(); // allow to vary slightly the agents (if equal to 0, the agents are only defined by the initialisation from the file) + } + + parametres = new float[6]; + parametres[1] = randomized; + parametres[2] = alpha; + parametres[3] = epsilon; + parametres[4] = (float) (nbPoint); + parametres[5] = (float) (nbWorldView); + boolean knowTheOthersHaveChanged = true; // to compute the opinions of the population of the group of each agent making them taking into account others have changed or not + myPop = new Tools(); + if (outputType == 0) { // the user wishes to have the average values of opinion over the population + myPop.ecritureInFileSourceStudyFromDataAVGSTD(nameFileResults); + } else { // it is equal to 1 and the user asks for the detailed value for each type of agents + myPop.ecritureInFileSourceStudyFromDataDetails(nameFileResults); + } + try { + myRand = new Random(); + long stuf = (long) (12345 * Math.random()); + myRand.setSeed(new long[]{stuf, 12345, 12345, 12345, 12345, 12345}); + } catch (Exception e) { + e.printStackTrace(); + } + int end = 0; + int i = 1; // + float numExpe = 0.0f; + expeFini = false; + while (!expeFini) { + numExpe++; + for (int j = 0; j < nbRepliques; j++) { + parametres[0] = (float) (j); // numReplique + end = i + (nbWorldView * 2) - 1; + System.err.println("I read and try to launch (if they exist in the file) the experimentations number " + i + " to " + end + " and the replica number " + j); + new ResistingHostility(alpha, epsilon, nbPoint, i, end, knowTheOthersHaveChanged, outputType); + } + i = end + 1; + } + System.err.println("The experimental design is finished. The last experimentations do not exist in the file."); + myPop.writResult.close(); + myPop = null; + } + + int[] typeId; + + public ResistingHostility(float alpha, float epsilon, int nbPoint, int firstLine, int endLine, boolean knowTheOthersHaveChanged, int outputType) { + this.alpha = alpha; + this.epsilon = epsilon; + this.nbPoints = nbPoint; // nbPoints to sample in j's tolerance segment to define the opinions of i about j + expeFini = initAgentsFromFile(firstLine, endLine, knowTheOthersHaveChanged); + if (!expeFini) { + typeId = new int[6]; + Arrays.fill(typeId, -1); + typeId[0] = 0; + String lastType = population[0].type; + String group = population[0].group; + int count = 1; + for (int i = 1; i < sizePop; i++) { + if (!population[i].type.equalsIgnoreCase(lastType) || !population[i].group.equalsIgnoreCase(group)) { + typeId[count] = i; + count++; + lastType = population[i].type; + group = population[i].group; + } + } + for (int z = 0; z < typeId.length; z++) { + for (int a = 0; a < typeId.length; a++) { + population[typeId[z]].previousOpinionOnOtherAgents[a] = population[typeId[z]].opinionOnOthers(population[typeId[a]], knowTheOthersHaveChanged); + } + } + messageFile = myPop.messageFileName; + nomExpe = myPop.country; + initMessage(); + this.nbIter = nbMessages; + computeAgentsOpinions(); + if (outputType == 0) { // the user wishes to have the average values of opinion over the population + iteration(knowTheOthersHaveChanged); + } else { // it is equal to 1 and the user asks for the detailed value for each type of agents + iterationWithAgentDetail(knowTheOthersHaveChanged); + } + } + } + + public boolean initAgentsFromFile(int firstLine, int endLine, boolean knowsAboutOthers) { + myPop.go = true; + boolean fini = countPop(firstLine, endLine); + if (!fini) { + population = new Agent[sizePop]; + String[] name = new String[nbWorldView]; + name[0] = new String("muslims"); + name[1] = new String("christians"); + name[2] = new String("areligious"); + int count = 0; + int z = 0; + while (myPop.go) { + z = 0; + float[][] popToGenere = myPop.lireExpDesignInitPop(firstLine, endLine, popFile, nbWorldView); + sizePop = (int) popToGenere[0][12]; + population = new Agent[sizePop]; + for (int i = 0; i < popToGenere.length; i++) { // i represents each type of agents + int dimAdhes = (int) popToGenere[i][0]; + int nb = (int) (popToGenere[i][1]); // + int type = (int) popToGenere[i][2]; + maPosition = new float[nbWorldView]; + lowTol = new float[nbWorldView]; + highTol = new float[nbWorldView]; + Arrays.fill(maPosition, 0.0f); + Arrays.fill(lowTol, 0.0f); + Arrays.fill(highTol, 0.0f); + z = 0; + for (int v = 0; v < nbWorldView;) { + lowTol[v] = popToGenere[i][3 + v + z]; + maPosition[v] = popToGenere[i][4 + v + z]; + highTol[v] = popToGenere[i][5 + v + z]; + v = v + 1; + z = z + 2; + } + + int j = 0; + for (j = 0; j < nb; j++) { + initAgentRandomized(); + population[count] = new Agent(this, type, count, name, maPosition, lowTol, highTol, sizePop, alpha, dimAdhes, nb); + count++; + } + + } + + firstLine = firstLine + popToGenere.length; + if (firstLine > endLine) { + myPop.go = false; + } + } + } + return fini; + } + + public boolean countPop(int fLine, int endL) { + Tools myPop = new Tools(); + int firstLine = fLine; + int count = 0; + int countInclusif = 0; + int countExclusif = 0; + while (myPop.go) { + float[][] popToGenere = myPop.lireExpDesignInitPop(firstLine, endL, popFile, nbWorldView); + if (!myPop.endFile) { + for (int i = 0; i < popToGenere.length; i++) { + //country = (int) popToGenere[i][0]; + int nb = (int) popToGenere[i][1]; + count = count + nb; + if ((int) popToGenere[i][2] == 1) { // inclusive + countInclusif = countInclusif + nb; + } else { // exclusive + countExclusif = countExclusif + nb; + } + if (i == popToGenere.length - 1) { + sizePop = count; + inclusifs = countInclusif; + exclusifs = countExclusif; + count = 0; + } + } + } + } + return myPop.endFile; + } + + float[] maPosition; + float[] lowTol; + float[] highTol; + + public void initAgentRandomized() { + // This is to randomize slightly the entering values of the cultural views profile + + float rand = -randomized + ((float) myRand.nextDouble() * (2 * randomized)); + double prop = 0.0; + for (int i = 0; i < nbWorldView; i++) { + prop = (maPosition[i] - lowTol[i]) / (highTol[i] - lowTol[i]); + lowTol[i] = lowTol[i] + rand; + rand = -randomized + ((float) myRand.nextDouble() * (2 * randomized)); + highTol[i] = highTol[i] + rand; + while (highTol[i] <= lowTol[i]) { + rand = -randomized + ((float) myRand.nextDouble() * (2 * randomized)); + highTol[i] = highTol[i] + rand; + } + maPosition[i] = lowTol[i] + (float) (prop * (highTol[i] - lowTol[i])); + } + // + } + + // compute the opinions of the agents on the others as an indicator + public void computeAgentsOpinions() { + for (int i = 0; i < sizePop; i++) { + for (int j = 0; j < sizePop; j++) { + population[i].opinionGlobalOnOthers[j] = (float) population[i].opinionOnOthers(population[j]); + } + } + } + +// compute the opinions of the agents on the others as an indicator + public double[] computeAgentsOpinions(int agentComputer, boolean knowTheOthersHasChanged) { + double[] op = new double[sizePop]; + Arrays.fill(op, 1.0); + for (int i = 0; i < sizePop; i++) { + if (i != agentComputer) { + op[i] = (float) population[agentComputer].opinionOnOthers(population[i], knowTheOthersHasChanged); + } + } + return op; + } + + // compute the opinions of one group for another group (or the same) one group by cultural dimension composed of people having their highest maPosition in the group dimension + public float[] computeAgentsOpinionsAvgStd(int dimGroupComputer, int dimOtherGroup, boolean knowTheOthersHasChanged) { + float op[] = new float[2]; + Arrays.fill(op, 0.0f); + int divisor = 0; + for (int i = 0; i < sizePop; i++) { + if (population[i].mainCWWFromGroup() == dimGroupComputer) { + for (int j = 0; j < sizePop; j++) { + if (population[j].mainCWWFromGroup() == dimOtherGroup) { + op[0] = op[0] + (float) population[i].opinionOnOthers(population[j], knowTheOthersHasChanged); + divisor++; + } + } + } + } + op[0] = op[0] / (float) divisor; // computation of the average + for (int i = 0; i < sizePop; i++) { + if (population[i].mainCWWFromGroup() == dimGroupComputer) { + for (int j = 0; j < sizePop; j++) { + if (population[j].mainCWWFromGroup() == dimOtherGroup) { + op[1] = op[1] + (float) Math.pow(population[i].opinionOnOthers(population[j], knowTheOthersHasChanged) - op[0], 2.0); + } + } + } + } + op[1] = (float) Math.sqrt(op[1] / (float) divisor); // computation of the average + return op; + } + + // compute the opinions of one group for another group (or the same) one group by cultural dimension composed of people having their highest maPosition in the group dimension + public float[] computeAgentsOpinionsAvgStdSimplified(int dimGroupComputer, int dimOtherGroup, boolean knowTheOthersHasChanged) { + float op[] = new float[2]; + Arrays.fill(op, 0.0f); + int divisor = 0; + int nbCouples = 0; + for (int i = 0; i < typeId.length; i++) { + if (population[typeId[i]].mainCWWFromGroup() == dimGroupComputer) { + for (int j = 0; j < typeId.length; j++) { + //for (int j = 0; j < sizePop; j++) { + if (population[typeId[j]].mainCWWFromGroup() == dimOtherGroup) { + nbCouples = (population[typeId[i]].nbAgentThisType * population[typeId[j]].nbAgentThisType); + op[0] = op[0] + nbCouples * (float) population[typeId[i]].opinionOnOthers(population[typeId[j]], knowTheOthersHasChanged); + divisor = divisor + nbCouples; + } + } + } + } + op[0] = op[0] / (float) divisor; // computation of the average + nbCouples = 0; + for (int i = 0; i < typeId.length; i++) { + if (population[typeId[i]].mainCWWFromGroup() == dimGroupComputer) { + for (int j = 0; j < typeId.length; j++) { + if (population[typeId[j]].mainCWWFromGroup() == dimOtherGroup) { + nbCouples = (population[typeId[i]].nbAgentThisType * population[typeId[j]].nbAgentThisType); + op[1] = op[1] + nbCouples * (float) Math.pow(population[typeId[i]].opinionOnOthers(population[typeId[j]], knowTheOthersHasChanged) - op[0], 2.0); + } + } + } + } + op[1] = (float) Math.sqrt(op[1] / (float) divisor); // computation of the average + return op; + } + + // compute the opinions of one group for all the population + public float[] computeAgentsOpinionsAvgStdOfAll(int dimGroupComputer, boolean knowTheOthersHasChanged) { + float op[] = new float[2]; + Arrays.fill(op, 0.0f); + int divisor = 0; + int nbCouples = 0; + for (int i = 0; i < typeId.length; i++) { + if (population[typeId[i]].mainCWWFromGroup() == dimGroupComputer) { + for (int j = 0; j < typeId.length; j++) { + nbCouples = (population[typeId[i]].nbAgentThisType * population[typeId[j]].nbAgentThisType); + op[0] = op[0] + nbCouples * (float) population[typeId[i]].opinionOnOthers(population[typeId[j]], knowTheOthersHasChanged); + divisor = divisor + nbCouples; + } + } + } + op[0] = op[0] / (float) divisor; // computation of the average + nbCouples = 0; + for (int i = 0; i < typeId.length; i++) { + if (population[typeId[i]].mainCWWFromGroup() == dimGroupComputer) { + for (int j = 0; j < typeId.length; j++) { + nbCouples = (population[typeId[i]].nbAgentThisType * population[typeId[j]].nbAgentThisType); + op[1] = op[1] + nbCouples * (float) Math.pow(population[typeId[i]].opinionOnOthers(population[typeId[j]], knowTheOthersHasChanged) - op[0], 2.0); + } + } + } + op[1] = (float) Math.sqrt(op[1] / (float) divisor); // computation of the average + return op; + } + + // compute the opinions of everyone one on one particular group + public float[] computeAgentsOpinionsAvgStdOnOneGroup(int dimGroupToEvaluate, boolean knowTheOthersHasChanged) { + float op[] = new float[2]; + Arrays.fill(op, 0.0f); + int divisor = 0; + int nbCouples = 0; + for (int i = 0; i < typeId.length; i++) { + for (int j = 0; j < typeId.length; j++) { + if (population[typeId[j]].mainCWWFromGroup() == dimGroupToEvaluate) { + nbCouples = (population[typeId[i]].nbAgentThisType * population[typeId[j]].nbAgentThisType); + op[0] = op[0] + nbCouples * (float) population[typeId[i]].opinionOnOthers(population[typeId[j]], knowTheOthersHasChanged); + divisor = divisor + nbCouples; + } + } + } + op[0] = op[0] / (float) divisor; // computation of the average + nbCouples = 0; + for (int i = 0; i < typeId.length; i++) { + for (int j = 0; j < typeId.length; j++) { + if (population[typeId[j]].mainCWWFromGroup() == dimGroupToEvaluate) { + nbCouples = (population[typeId[i]].nbAgentThisType * population[typeId[j]].nbAgentThisType); + op[1] = op[1] + nbCouples * (float) Math.pow(population[typeId[i]].opinionOnOthers(population[typeId[j]], knowTheOthersHasChanged) - op[0], 2.0); + } + } + } + op[1] = (float) Math.sqrt(op[1] / (float) divisor); // computation of the average + return op; + } + + // compute the opinions the agents has on one agent : the source + public float computeAgentsOpinionsOnASource(Agent source) { + float opSource = 0.0f; + for (int i = 0; i < sizePop; i++) { + opSource = opSource + (float) population[i].opinionOnOthers(source); + } + return opSource / (float) (sizePop - 1); + } + + public double computeAverageAgentsOpinions() { // except oneself + computeAgentsOpinions(); + double count = 0; + for (int i = 0; i < sizePop; i++) { + for (int j = 0; j < sizePop; j++) { + if (i != j) { + count = count + population[i].opinionGlobalOnOthers[j]; + } + } + } + count = count / (double) (sizePop * (sizePop - 1)); + return count; + } + + public void initMessage() { + messages = new ArrayList<Message>(); + float[][] popToGenere = myPop.lireExpDesignInitMessages(messageFile); + nbMessages = popToGenere.length; + int deb = 0; + String typeAgent = new String(); + float maxAdher = Float.MIN_VALUE; + int dimAdhes = -1; + for (int i = 0; i < nbMessages; i++) { + maxAdher = Float.MIN_VALUE; + deb = 1; + int nbCWW = (int) ((popToGenere[i].length - 1) / 3.0f); + float[] adherence = new float[nbCWW]; + float[] alow = new float[nbCWW]; + float[] amax = new float[nbCWW]; + for (int j = 0; j < nbCWW; j++) { + adherence[j] = popToGenere[i][deb + 1]; + if (adherence[j] > maxAdher) { + maxAdher = adherence[j]; + dimAdhes = i; + } + alow[j] = popToGenere[i][deb]; + amax[j] = popToGenere[i][deb + 2]; + deb = deb + 3; + } + + if (popToGenere[i][0] == 1) { + typeAgent = "agressor"; + } else { + typeAgent = "victim"; + } + Agent source = new Agent(this, typeAgent, adherence, alow, amax, alpha, dimAdhes, 1); + messages.add(new Message(i + 1, (int) (popToGenere[i][0]), source)); + } + } + + public double computeDistanceAutrui(int i, boolean knowTheOthersHaveChanged) { + double[] opinions = computeAgentsOpinions(i, knowTheOthersHaveChanged); + double distanceAutrui = 0.0; + for (int z = 0; z < opinions.length; z++) { + if (z != i) { + distanceAutrui = distanceAutrui + Math.abs(1 - opinions[z]); + } + } + distanceAutrui = distanceAutrui / (double) (opinions.length - 1); + return distanceAutrui; + } + + public double computeIntraGroupDistance(int i, boolean knowTheOthersHaveChanged) { + double distanceIntraGroup = 0.0; + int nbIndiv = 0; + for (int z = 0; z < sizePop; z++) { + if (population[z].mainCWWFromGroup() == population[i].mainCWWFromGroup()) { + distanceIntraGroup = distanceIntraGroup + (Math.abs(1.0 - population[i].opinionOnOthers(population[z], knowTheOthersHaveChanged))); + nbIndiv++; + } + } + distanceIntraGroup = distanceIntraGroup / (double) nbIndiv; + return distanceIntraGroup; + } + + public double computeOpPop(int i, boolean knowTheOthersHaveChanged) { // compute the average opinion of one agent type over all the population + double[] opinions = computeAgentsOpinions(i, knowTheOthersHaveChanged); + double cumul = 0.0; + for (int z = 0; z < opinions.length; z++) { + cumul = cumul + opinions[z]; + } + cumul = cumul / (double) (opinions.length); + return cumul; + } + + public double[] computeOpGroup(int i, boolean knowTheOthersHaveChanged) { // compute the average opinions of one agent type over each groups of agent + double[] opinions = computeAgentsOpinions(i, knowTheOthersHaveChanged); + double[] cumul = new double[nbWorldView]; + int[] nbByGroup = new int[nbWorldView]; + Arrays.fill(nbByGroup, 0); + Arrays.fill(cumul, 0.0); + int temp = -1; + for (int z = 0; z < opinions.length; z++) { + temp = population[z].mainCWWFromGroup(); + cumul[temp] = cumul[temp] + opinions[z]; + nbByGroup[temp] = nbByGroup[temp] + 1; + } + for (int j = 0; j < nbWorldView; j++) { + cumul[j] = cumul[j] / (double) (nbByGroup[j]); + } + return cumul; + } + + public void iterationWithAgentDetail(boolean knowTheOthersHaveChanged) { + + // impression etat init + iteration = 0; + double opSourceBeforeMessage = -2.0f; + double opSourceAfterMessage = -2.0f; + double opSourceThreatBeforeMessage = -2.0f; + double opSourceThreatAfterMessage = -2.0f; + double opSourceMuslimInclusifBeforeMessage = -2.0f; + double opSourceMuslimInclusifAfterMessage = -2.0f; + double opSourceMuslimExclusifBeforeMessage = -2.0f; + double opSourceMuslimExclusifAfterMessage = -2.0f; + double opSourceAreligiousInclusifBeforeMessage = -2.0f; + double opSourceAreligiousInclusifAfterMessage = -2.0f; + double opSourceAreligiousExclusifBeforeMessage = -2.0f; + double opSourceAreligiousExclusifAfterMessage = -2.0f; + double opSourceChristiansInclusifBeforeMessage = -2.0f; + double opSourceChristiansInclusifAfterMessage = -2.0f; + double opSourceChristiansExclusifBeforeMessage = -2.0f; + double opSourceChristiansExclusifAfterMessage = -2.0f; + + double distInGroupDontSeeOthers = -1000; + double distAutrui = -1000.0; + double opPop = 0.0; + double[] opGroup = new double[nbWorldView]; + double stdPop; + double[] stdGroup = new double[nbWorldView]; + Arrays.fill(opGroup, 0.0); + Arrays.fill(stdGroup, 0.0); + + //recolter un individu de chaque type et les mettre dans loop ci-dessous + int[] typeId = new int[6]; + Arrays.fill(typeId, -1); + typeId[0] = 0; + String lastType = population[0].type; + String group = population[0].group; + int count = 1; + for (int i = 1; i < sizePop; i++) { + if (!population[i].type.equalsIgnoreCase(lastType) || !population[i].group.equalsIgnoreCase(group)) { + //System.err.println(lastType + " " + population[i].type + " " + group + " " + population[i].group); + typeId[count] = i; + count++; + lastType = population[i].type; + group = population[i].group; + } + } + for (int z = 0; z < typeId.length; z++) { // everyone is impacted by the message except the "emetteur" who is not is the population + int i = typeId[z]; + opSourceThreatBeforeMessage = population[i].opinionOnOthers(messages.get(0).emetteur); + opSourceMuslimInclusifBeforeMessage = population[i].opinionOnOthers(population[4]); + opSourceMuslimExclusifBeforeMessage = population[i].opinionOnOthers(population[5]); + opSourceChristiansInclusifBeforeMessage = population[i].opinionOnOthers(population[2]); + opSourceChristiansExclusifBeforeMessage = population[i].opinionOnOthers(population[3]); + opSourceAreligiousInclusifBeforeMessage = population[i].opinionOnOthers(population[0]); + opSourceAreligiousExclusifBeforeMessage = population[i].opinionOnOthers(population[1]); + + distAutrui = computeDistanceAutrui(i, knowTheOthersHaveChanged); + distInGroupDontSeeOthers = computeIntraGroupDistance(i, knowTheOthersHaveChanged); + population[i].distAutruiInit = distAutrui; + opPop = computeOpPop(i, knowTheOthersHaveChanged); + opGroup = computeOpGroup(i, knowTheOthersHaveChanged); + + opSourceThreatAfterMessage = opSourceThreatBeforeMessage; + opSourceMuslimInclusifAfterMessage = opSourceMuslimInclusifBeforeMessage; + opSourceMuslimExclusifAfterMessage = opSourceMuslimExclusifBeforeMessage; + opSourceChristiansInclusifAfterMessage = opSourceChristiansInclusifBeforeMessage; + opSourceChristiansExclusifAfterMessage = opSourceChristiansExclusifBeforeMessage; + opSourceAreligiousInclusifAfterMessage = opSourceAreligiousInclusifBeforeMessage; + opSourceAreligiousExclusifAfterMessage = opSourceAreligiousExclusifBeforeMessage; + + writeImpactMessageWithAgentDetails(population[i], messages.get(0), (float) opSourceBeforeMessage, (float) opSourceAfterMessage, + (float) opSourceThreatBeforeMessage, (float) opSourceThreatAfterMessage, + (float) opSourceMuslimInclusifBeforeMessage, (float) opSourceMuslimInclusifAfterMessage, + (float) opSourceMuslimExclusifBeforeMessage, (float) opSourceMuslimExclusifAfterMessage, + (float) opSourceAreligiousInclusifBeforeMessage, (float) opSourceAreligiousInclusifAfterMessage, + (float) opSourceAreligiousExclusifBeforeMessage, (float) opSourceAreligiousExclusifAfterMessage, + (float) opSourceChristiansInclusifBeforeMessage, (float) opSourceChristiansInclusifAfterMessage, + (float) opSourceChristiansExclusifBeforeMessage, (float) opSourceChristiansExclusifAfterMessage, + (float) distAutrui, (float) distAutrui, + (float) distInGroupDontSeeOthers, (float) distInGroupDontSeeOthers, + (float) opPop, opGroup, knowTheOthersHaveChanged); + } + int mes = 0; + for (int it = 1; it <= nbIter; it++) { + iteration = it; + mes = mediaMessageWithAgentDetails(mes, it, knowTheOthersHaveChanged); + } + } + + public void iteration(boolean knowTheOthersHaveChanged) { + // impression etat init + iteration = 0; + writeImpactMessageAVGSTD(messages.get(0), knowTheOthersHaveChanged); + // fin impression etat init + int mes = 0; + for (int i = 1; i <= nbIter; i++) { + iteration = i; + mes = mediaMessage(mes, i, knowTheOthersHaveChanged); // send to agent I a value on agent J + } + } + + public int mediaMessageWithAgentDetails(int mes, int iter, boolean knowTheOthersHaveChanged) { + int nextMes = mes; + if (mes < messages.size()) { + double opSourceBeforeMessage = -2.0f; + double opSourceAfterMessage = -2.0f; + double opSourceThreatBeforeMessage = -2.0f; + double opSourceThreatAfterMessage = -2.0f; + double opSourceMuslimInclusifBeforeMessage = -2.0f; + double opSourceMuslimInclusifAfterMessage = -2.0f; + double opSourceMuslimExclusifBeforeMessage = -2.0f; + double opSourceMuslimExclusifAfterMessage = -2.0f; + double opSourceAreligiousInclusifBeforeMessage = -2.0f; + double opSourceAreligiousInclusifAfterMessage = -2.0f; + double opSourceAreligiousExclusifBeforeMessage = -2.0f; + double opSourceAreligiousExclusifAfterMessage = -2.0f; + double opSourceChristiansInclusifBeforeMessage = -2.0f; + double opSourceChristiansInclusifAfterMessage = -2.0f; + double opSourceChristiansExclusifBeforeMessage = -2.0f; + double opSourceChristiansExclusifAfterMessage = -2.0f; + + double distAutruiIfAllOthersAreMet = -1000.0; // see my change but also the change of others + double distAutruiJustEvolvingDueTheMessageImpact = -1000.0;; // only see my change, do not see the change of others + double distInGroupSeeOthers = -1000; + double distInGroupDontSeeOthers = -1000; + double opPop = 0.0; + double[] opGroup = new double[nbWorldView]; + double stdPop; + double[] stdGroup = new double[nbWorldView]; + Arrays.fill(opGroup, 0.0); + Arrays.fill(stdGroup, 0.0); + + if (messages.get(mes).time == iter) { + for (int z = 0; z < typeId.length; z++) { // everyone is impacted by the message except the "emetteur" who is not is the population + int i = typeId[z]; // the type of agent + + opSourceBeforeMessage = population[i].opinionOnOthers(messages.get(mes).emetteur); + opSourceThreatBeforeMessage = population[i].opinionOnOthers(messages.get(0).emetteur); + opSourceMuslimInclusifBeforeMessage = population[i].opinionOnOthers(population[4]); + opSourceMuslimExclusifBeforeMessage = population[i].opinionOnOthers(population[5]); + opSourceAreligiousInclusifBeforeMessage = population[i].opinionOnOthers(population[0]); + opSourceAreligiousExclusifBeforeMessage = population[i].opinionOnOthers(population[1]); + opSourceChristiansInclusifBeforeMessage = population[i].opinionOnOthers(population[2]); + opSourceChristiansExclusifBeforeMessage = population[i].opinionOnOthers(population[3]); + + population[i].reactionToMessage(messages.get(mes).type, messages.get(mes).emetteur); + distAutruiIfAllOthersAreMet = computeDistanceAutrui(i, !knowTheOthersHaveChanged); + distAutruiJustEvolvingDueTheMessageImpact = computeDistanceAutrui(i, knowTheOthersHaveChanged); + distInGroupSeeOthers = computeIntraGroupDistance(i, !knowTheOthersHaveChanged); + distInGroupDontSeeOthers = computeIntraGroupDistance(i, knowTheOthersHaveChanged); + opPop = computeOpPop(i, knowTheOthersHaveChanged); + opGroup = computeOpGroup(i, knowTheOthersHaveChanged); + + opSourceAfterMessage = population[i].opinionOnOthers(messages.get(mes).emetteur); + opSourceThreatAfterMessage = population[i].opinionOnOthers(messages.get(0).emetteur); + opSourceMuslimInclusifAfterMessage = population[i].opinionOnOthers(population[4]); + opSourceMuslimExclusifAfterMessage = population[i].opinionOnOthers(population[5]); + opSourceAreligiousInclusifAfterMessage = population[i].opinionOnOthers(population[0]); + opSourceAreligiousExclusifAfterMessage = population[i].opinionOnOthers(population[1]); + opSourceChristiansInclusifAfterMessage = population[i].opinionOnOthers(population[2]); + opSourceChristiansExclusifAfterMessage = population[i].opinionOnOthers(population[3]); + writeImpactMessageWithAgentDetails(population[i], messages.get(mes), (float) opSourceBeforeMessage, (float) opSourceAfterMessage, + (float) opSourceThreatBeforeMessage, (float) opSourceThreatAfterMessage, + (float) opSourceMuslimInclusifBeforeMessage, (float) opSourceMuslimInclusifAfterMessage, + (float) opSourceMuslimExclusifBeforeMessage, (float) opSourceMuslimExclusifAfterMessage, + (float) opSourceAreligiousInclusifBeforeMessage, (float) opSourceAreligiousInclusifAfterMessage, + (float) opSourceAreligiousExclusifBeforeMessage, (float) opSourceAreligiousExclusifAfterMessage, + (float) opSourceChristiansInclusifBeforeMessage, (float) opSourceChristiansInclusifAfterMessage, + (float) opSourceChristiansExclusifBeforeMessage, (float) opSourceChristiansExclusifAfterMessage, + (float) distAutruiIfAllOthersAreMet, (float) distAutruiJustEvolvingDueTheMessageImpact, + (float) distInGroupSeeOthers, (float) distInGroupDontSeeOthers, + (float) opPop, opGroup, knowTheOthersHaveChanged); + } + nextMes = mes + 1; + } + } + return nextMes; + } + + public int mediaMessage(int mes, int iter, boolean knowTheOthersHaveChanged) { + int nextMes = mes; + if (mes < messages.size()) { + if (messages.get(mes).time == iter) { + for (int i = 0; i < sizePop; i++) { // everyone is impacted by the message except the "emetteur" who is not is the population + population[i].reactionToMessage(messages.get(mes).type, messages.get(mes).emetteur); + } + if (iter == 7) { + writeImpactMessageAVGSTD(messages.get(0), knowTheOthersHaveChanged); + } + nextMes = mes + 1; + } + } + return nextMes; + } + + public void writeImpactMessageWithAgentDetails(Agent receiver, Message mes, float opSourceBeforeMessage, float opSourceAfterMessage, + float opSourceThreatBeforeMessage, float opSourceThreatAfterMessage, + float opSourceMuslimInclusifBeforeMessage, float opSourceMuslimInclusifAfterMessage, + float opSourceMuslimExclusifBeforeMessage, float opSourceMuslimExclusifAfterMessage, + float opSourceAreligiousInclusifBeforeMessage, float opSourceAreligiousInclusifAfterMessage, + float opSourceAreligiousExclusifBeforeMessage, float opSourceAreligiousExclusifAfterMessage, + float opSourceChristiansInclusifBeforeMessage, float opSourceChristiansInclusifAfterMessage, + float opSourceChristiansExclusifBeforeMessage, float opSourceChristiansExclusifAfterMessage, + float distAutruiOtherAndMeChanged, float distAutruiOnlyMeChanged, + float distIntraGroupSeeOthers, float distIntraGroupSeeMeOnly, + float opPop, double[] opGroup, boolean knowsAboutOthers) { + //System.err.println("je passe dans ecrire avec detail "); + myPop.writResult.print(popFile + ";"); + myPop.writResult.print(messageFile + ";"); + myPop.writResult.print(nomExpe + ";"); + printParametres(); + myPop.writResult.print(iteration + ";"); + myPop.writResult.print(receiver.nbAgentThisType + ";"); + myPop.writResult.print(receiver.type + ";"); + myPop.writResult.print(receiver.mainCWWFromGroup() + ";"); + for (int i = 0; i < receiver.myCulture.length; i++) { + myPop.writResult.print(receiver.myCulture[i].alow + ";"); + myPop.writResult.print(receiver.myCulture[i].maPosition + ";"); + myPop.writResult.print(receiver.myCulture[i].amax + ";"); + } + myPop.writResult.print(mes.type + ";"); + myPop.writResult.print(mes.emetteur.type + ";"); + myPop.writResult.print(mes.emetteur.mainCWWFromGroup() + ";"); + for (int i = 0; i < mes.emetteur.myCulture.length; i++) { + myPop.writResult.print(mes.emetteur.myCulture[i].alow + ";"); + myPop.writResult.print(mes.emetteur.myCulture[i].maPosition + ";"); + myPop.writResult.print(mes.emetteur.myCulture[i].amax + ";"); + } + myPop.writResult.print(opSourceBeforeMessage + ";"); + myPop.writResult.print(opSourceAfterMessage + ";"); + myPop.writResult.print(opSourceThreatBeforeMessage + ";"); + myPop.writResult.print(opSourceThreatAfterMessage + ";"); + myPop.writResult.print(opSourceMuslimInclusifBeforeMessage + ";"); + myPop.writResult.print(opSourceMuslimInclusifAfterMessage + ";"); + myPop.writResult.print(opSourceMuslimExclusifBeforeMessage + ";"); + myPop.writResult.print(opSourceMuslimExclusifAfterMessage + ";"); + myPop.writResult.print(opSourceAreligiousInclusifBeforeMessage + ";"); + myPop.writResult.print(opSourceAreligiousInclusifAfterMessage + ";"); + myPop.writResult.print(opSourceAreligiousExclusifBeforeMessage + ";"); + myPop.writResult.print(opSourceAreligiousExclusifAfterMessage + ";"); + myPop.writResult.print(opSourceChristiansInclusifBeforeMessage + ";"); + myPop.writResult.print(opSourceChristiansInclusifAfterMessage + ";"); + myPop.writResult.print(opSourceChristiansExclusifBeforeMessage + ";"); + myPop.writResult.print(opSourceChristiansExclusifAfterMessage + ";"); + myPop.writResult.print(distAutruiOnlyMeChanged + ";"); + myPop.writResult.print(distAutruiOtherAndMeChanged + ";"); + myPop.writResult.print(distIntraGroupSeeMeOnly + ";"); + myPop.writResult.print(distIntraGroupSeeOthers + ";"); + myPop.writResult.print(knowsAboutOthers + ";"); + myPop.writResult.print(opPop + ";"); + for (int i = 0; i < nbWorldView; i++) { + myPop.writResult.print((float) opGroup[i] + ";"); + } + myPop.writResult.println(); + } + + public void writeImpactMessageAVGSTD(Message mes, boolean knowsAboutOthers) { // AVGSTD + myPop.writResult.print(popFile + ";"); + myPop.writResult.print(messageFile + ";"); + myPop.writResult.print(nomExpe + ";"); + printParametres(); + myPop.writResult.print(iteration + ";"); + for (int z = 0; z < typeId.length; z++) { + myPop.writResult.print(population[typeId[z]].group + ";"); + myPop.writResult.print(population[typeId[z]].type + ";"); + myPop.writResult.print(population[typeId[z]].nbAgentThisType + ";"); + } + float[] avgStd = new float[2]; + Arrays.fill(avgStd, 0.0f); + // opinion of each group on another group + for (int a = 0; a < nbWorldView; a++) { + for (int b = 0; b < nbWorldView; b++) { + avgStd = computeAgentsOpinionsAvgStdSimplified(a, b, knowsAboutOthers); + myPop.writResult.print(new Float(avgStd[0]).toString().replace(".", ",") + ";"); + myPop.writResult.print(new Float(avgStd[1]).toString().replace(".", ",") + ";"); + } + } + // opinion of every one on each group + for (int a = 0; a < nbWorldView; a++) { + avgStd = computeAgentsOpinionsAvgStdOfAll(a, knowsAboutOthers); + myPop.writResult.print(new Float(avgStd[0]).toString().replace(".", ",") + ";"); + myPop.writResult.print(new Float(avgStd[1]).toString().replace(".", ",") + ";"); + } + // of the two other groups + for (int a = 0; a < nbWorldView; a++) { + avgStd = computeAgentsOpinionsAvgStdOnOneGroup(a, knowsAboutOthers); + myPop.writResult.print(new Float(avgStd[0]).toString().replace(".", ",") + ";"); + myPop.writResult.print(new Float(avgStd[1]).toString().replace(".", ",") + ";"); + } + myPop.writResult.println(); + } + + public void printParametres() { + for (int i = 0; i < parametres.length; i++) { + myPop.writResult.print(((new Float(parametres[i])).toString()).replace(".", ",") + ";"); + } + } + + public double computeTolerance(int culturalDim) { // compute the average tolerance width of everyone for a cultural dimension + double temp = 0; + double tol = 0; + for (int i = 0; i < sizePop; i++) { + temp = population[i].myCulture[culturalDim].amax - 0; // ne compte que la partie positive de la tolerance + if (temp > 0) { + tol = tol + temp; + } + } + tol = tol / (double) sizePop; + return tol; + } + +} diff --git a/src/Tools.java b/src/Tools.java new file mode 100644 index 0000000000000000000000000000000000000000..a9282ed4c32b05f8957b0c32513f31a3422135a1 --- /dev/null +++ b/src/Tools.java @@ -0,0 +1,254 @@ + +import cern.colt.Arrays; +import java.io.File; +import java.io.FileOutputStream; +import java.io.IOException; +import java.io.PrintStream; +import java.util.ArrayList; +import java.util.List; +import jxl.Cell; +import jxl.Sheet; +import jxl.Workbook; +import jxl.read.biff.BiffException; + +/* + * To change this license header, choose License Headers in Project Properties. + * To change this template file, choose Tools | Templates + * and open the template in the editor. + */ +/** + * + * @author oumou-raby.dia + */ +public class Tools { + + public boolean go; + public boolean endFile; + public PrintStream writResult; + public String messageFileName; + public String country; // give the name of the experiment + + public Tools() { + go = true; + } + + //Lecture des données d'initialisation des agents + public float[][] lireExpDesignInitPop(int firstLine, int endLine, String name, int nbDimCulturel) { + go = true; + float[][] myPop = new float[0][0]; + Workbook workbook = null; + try { + /* Récupération du classeur Excel (en lecture) */ + workbook = Workbook.getWorkbook(new File(name)); + /* Un fichier excel est composé de plusieurs feuilles, on y accède de la manière suivante*/ + Sheet sheet = workbook.getSheet(0); + int a = 0; + if (firstLine >= sheet.getRows()) { + endFile = true; + go = false; + } else { + myPop = new float[nbDimCulturel * 2][0]; + for (int j = firstLine; j <= endLine; j++) { + Cell[] lineExpe = sheet.getRow(j); + myPop[a] = readLineInitPop(lineExpe, nbDimCulturel); + a++; + } + go = false; + } + workbook.close(); + } catch (BiffException e) { + e.printStackTrace(); + } catch (IOException e) { + e.printStackTrace(); + } finally { + if (workbook != null) { + /* On ferme le worbook pour libérer la mémoire */ + workbook.close(); + } + } + return myPop; + } + + public float[] readLineInitPop(Cell[] lineExpe, int nbDimCult) { + float[] toGenere = new float[13]; + + String[] expe = new String[lineExpe.length]; + for (int i = 0; i < lineExpe.length; i++) { + expe[i] = (lineExpe[i].getContents()).replaceAll(",", "."); + } + + country = expe[0]; + messageFileName = expe[1]; + float taillePop = (new Integer(expe[2])).intValue(); + float dimAdhesion = -1.0f; + if ((expe[3]).equals("areligious")) { + dimAdhesion = 2.0f; + } else if ((expe[3]).equals("christians")) { + dimAdhesion = 1.0f; + } else { // is muslim + dimAdhesion = 0.0f; + } + float partTypeInPop = (new Float(expe[4])).floatValue(); + float type = (new Float(expe[5])).floatValue(); + float CWWlow1 = (new Float(expe[6])).floatValue(); + float CWWadherence1 = (new Float(expe[7])).floatValue(); + float CWWup1 = (new Float(expe[8])).floatValue(); + float CWWlow2 = (new Float(expe[9])).floatValue(); + float CWWadherence2 = (new Float(expe[10])).floatValue(); + float CWWup2 = (new Float(expe[11])).floatValue(); + float CWWlow3 = (new Float(expe[12])).floatValue(); + float CWWadherence3 = (new Float(expe[13])).floatValue(); + float CWWup3 = (new Float(expe[14])).floatValue(); + + int nbDimAdhes = Math.round(taillePop * partTypeInPop); + + toGenere[0] = dimAdhesion; + toGenere[1] = nbDimAdhes; + toGenere[2] = type; + toGenere[3] = CWWlow1; + toGenere[4] = CWWadherence1; + toGenere[5] = CWWup1; + toGenere[6] = CWWlow2; + toGenere[7] = CWWadherence2; + toGenere[8] = CWWup2; + toGenere[9] = CWWlow3; + toGenere[10] = CWWadherence3; + toGenere[11] = CWWup3; + toGenere[12] = taillePop; + + return toGenere; + } + + public int[] readLineInitPopOld(Cell[] lineExpe, int nbDimCult) { + + int[] toGenere = new int[8]; + + String[] expe = new String[lineExpe.length]; + for (int i = 0; i < lineExpe.length; i++) { + expe[i] = (lineExpe[i].getContents()).replaceAll(",", "."); + } + + country = expe[0]; + messageFileName = expe[1]; + int taillePop = (new Integer(expe[2])).intValue(); + int dimAdhesion = (new Integer(expe[3])).intValue(); + float partTypeInPop = (new Float(expe[4])).floatValue(); + float partInclusiveInType = (new Float(expe[5])).floatValue(); + float partExclusiveInType = (new Float(expe[6])).floatValue(); + float partExtremInInclusif = (new Float(expe[7])).floatValue(); + float partExtremInExclusif = (new Float(expe[8])).floatValue(); + int nbDimAdhes = (int) (taillePop * partTypeInPop); + int inclus = (int) (nbDimAdhes * partInclusiveInType); + int exclus = nbDimAdhes - inclus; + int inclusExtr = (int) (inclus * partExtremInInclusif); + int exclusExtr = (int) (exclus * partExtremInExclusif); + + toGenere[0] = dimAdhesion; + toGenere[1] = nbDimAdhes; + toGenere[2] = inclus; + toGenere[3] = exclus; + toGenere[4] = inclusExtr; + toGenere[5] = exclusExtr; + toGenere[6] = taillePop; + toGenere[7] = nbDimCult; + + return toGenere; + } + + public void ecritureInFileSourceStudyFromDataAVGSTD(String nomFile) { + try { + writResult = new PrintStream(new FileOutputStream(new File(nomFile))); + writResult.print("popFile" + ";" + "messageFile" + ";" + "nomExpe" + ";" + "numReplique" + ";" + "randomizedInitCWW" + ";" + "alpha" + ";" + "epsilon" + ";" + "nbPoints" + ";" + "nbDimCWW" + ";"); + writResult.print("iteration" + ";" + + + "GroupOfAgent(2=Areligious,1=Christians,0=Muslims" + ";" + "typeOfAgent" +";" + "numberOfAgentOfThisType(AreligiousInclusive)"+ ";" + + "GroupOfAgent(2=Areligious,1=Christians,0=Muslims" + ";" + "typeOfAgent" +";" + "numberOfAgentOfThisType(AreligiousExclusive)"+ ";" + + "GroupOfAgent(2=Areligious,1=Christians,0=Muslims" + ";" + "typeOfAgent" +";" + "numberOfAgentOfThisType(ChristiansInclusive)"+ ";" + + "GroupOfAgent(2=Areligious,1=Christians,0=Muslims" + ";" + "typeOfAgent" +";" + "numberOfAgentOfThisType(ChristiansExclusive)"+ ";" + + "GroupOfAgent(2=Areligious,1=Christians,0=Muslims" + ";" + "typeOfAgent" +";" + "numberOfAgentOfThisType(MuslimsInclusive)"+ ";" + + "GroupOfAgent(2=Areligious,1=Christians,0=Muslims" + ";" + "typeOfAgent" +";" + "numberOfAgentOfThisType(MuslimsExclusive)"+ ";" + + "AverageOpinionOfGroup0onGroup0" + ";" + "STDDevOpinionOfGroup0onGroup0" + ";" + "AverageOpinionOfGroup0onGroup1" + ";" + "STDDevOpinionOfGroup0onGroup1" + ";" + "AverageOpinionOfGroup0onGroup2" + ";" + "STDDevOpinionOfGroup0onGroup2" + ";" + + "AverageOpinionOfGroup1onGroup0" + ";" + "STDDevOpinionOfGroup1onGroup0" + ";" + "AverageOpinionOfGroup1onGroup1" + ";" + "STDDevOpinionOfGroup1onGroup1" + ";" + "AverageOpinionOfGroup1onGroup2" + ";" + "STDDevOpinionOfGroup1onGroup2" + ";" + + "AverageOpinionOfGroup2onGroup0" + ";" + "STDDevOpinionOfGroup2onGroup0" + ";" + "AverageOpinionOfGroup2onGroup1" + ";" + "STDDevOpinionOfGroup2onGroup1" + ";" + "AverageOpinionOfGroup2onGroup2" + ";" + "STDDevOpinionOfGroup2onGroup2" + ";" + + "AverageOpinionOfGroup0OnAllTheAgents" + ";" + "STDDevOpinionOfGroup0OnAllTheAgents" + ";" + "AverageOpinionOfGroup1OnAllTheAgents" + ";" + "STDDevOpinionOfGroup1OnAllTheAgents" + ";" + "AverageOpinionOfGroup2OnAllTheAgents" + ";" + "STDDevOpinionOfGroup2OnAllTheAgents" + ";" + + "AverageOpinionOfAllOnGroup0members" + ";" + "STDDevOpinionOfAllOnGroup0members" + ";" + "AverageOpinionOfAllOnGroup1members" + ";" + "STDDevOpinionOfAllOnGroup1members" + ";" + "AverageOpinionOfAllOnGroup2members" + ";" + "STDDevOpinionOfAllOnGroup2members" + ";"); + writResult.println(); + } catch (Exception e) { + System.err.println("Erreur création du fichier pour le résultat de l'algorithme : " + e); + } + } + + public void ecritureInFileSourceStudyFromDataDetails(String nomFile) { // for the method : writeImpactMessageWithAgentDetails + try { + writResult = new PrintStream(new FileOutputStream(new File(nomFile))); + writResult.print("popFile" + ";" + "messageFile" + ";" + "nomExpe" + ";" + "numReplique" + ";" + "randomizedInitCWW" + ";" + "alpha" + ";" + "epsilon" + ";" + "nbPoints" + ";" + "nbDimCWW" + ";"); + writResult.print("iteration" + ";" + "numberOfAgentOfThisType" + ";" + "typeOfAgent" + ";" + "GroupOfAgent(2=Areligious,1=Christians,0=Muslims" + ";" + + "AgentCWW0Muslim low" + ";" + "AgentCWW0Muslim mostAcceptablePosition" + ";" + "AgentCWW0Muslim up" + ";" + + "AgentCWW1Christian low" + ";" + "AgentCWW1Christian mostAcceptablePosition" + ";" + "AgentCWW1Christian up" + ";" + + "AgentCWW2Areligious low" + ";" + "AgentCWW2Areligious mostAcceptablePosition" + ";" + "AgentCWW2Areligious up" + ";" + + "messageType(1=threat)" + ";" + "sourceMessagetype" + ";" + "groupOfTheSourceMessage" + ";" + + "sourceCWW0MuslimMuslim low" + ";" + "sourceCWW0Muslim mostAcceptablePosition" + ";" + "sourceCWW0Muslim up" + ";" + + "sourceCWW1Christian low" + ";" + "sourceCWW1Christian mostAcceptablePosition" + ";" + "sourceCWW1Christian up" + ";" + + "sourceCWW2Areligious low" + ";" + "sourceCWW2Areligious mostAcceptablePosition" + ";" + "sourceCWW2Areligious up" + ";" + + "averageOpinionOfThisTypeOfAgentOnSourceBeforeMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceAfterMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceThreatBeforeMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceThreatAfterMessage" + ";" + + "averageOpinionOfThisTypeOfAgentOnSourceMuslimInclusifBeforeMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceMuslimInclusifAfterMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceMuslimExclusifBeforeMessage" + ";" + + "averageOpinionOfThisTypeOfAgentOnSourceMuslimExclusifAfterMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceAreligiousInclusifBeforeMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceAreligiousInclusifAfterMessage" + ";" + + "averageOpinionOfThisTypeOfAgentOnSourceAreligiousExclusifBeforeMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceAreligiousExclusifAfterMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceChristiansInclusifBeforeMessage" + ";" + + "averageOpinionOfThisTypeOfAgentOnSourceChristiansInclusifAfterMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceChristiansExclusifBeforeMessage" + ";" + "averageOpinionOfThisTypeOfAgentOnSourceChristiansExclusifAfterMessage" + ";" + + "distAutruiOnlyMeChanged" + ";" + "distAutruiOtherAndMeChanged" + ";" + "distIntraGroupSeeMeOnly" + ";" + "distIntraGroupSeeOthers" + ";" + "knowsAboutOthers" + ";" + + "averageOpinionOfThisTypeOfAgentOnEveryone" + ";" + "averageOpinionOfThisTypeOfAgentOnGroup0Muslim" + ";" + "averageOpinionOfThisTypeOfAgentOn1Christian" + ";" + "averageOpinionOfThisTypeOfAgentOnGroup2Areligious" + ";"); + writResult.println(); + } catch (Exception e) { + System.err.println("Erreur création du fichier pour le résultat de l'algorithme : " + e); + } + } + + //label message, indiv source (ou pas), source type, source group, source cwws, opinion receiver on source avant message, opinion receiver on source après message + //Lecture des données d'initialisation des agents + public float[][] lireExpDesignInitMessages(String name) { + + float[][] myMessages = new float[0][0]; + Workbook workbook = null; + try { + /* Récupération du classeur Excel (en lecture) */ + workbook = Workbook.getWorkbook(new File(name)); + /* Un fichier excel est composé de plusieurs feuilles, on y accède de la manière suivante*/ + Sheet sheet = workbook.getSheet(0); + int nbMessages = sheet.getRows() - 1; + myMessages = new float[nbMessages][0]; + for (int j = 0; j < nbMessages; j++) { + Cell[] lineExpe = sheet.getRow(j + 1); + myMessages[j] = readLineInitMessage(lineExpe); + } + } catch (BiffException e) { + e.printStackTrace(); + } catch (IOException e) { + e.printStackTrace(); + } finally { + if (workbook != null) { + /* On ferme le worbook pour libérer la mémoire */ + workbook.close(); + } + } + return myMessages; + } + + public float[] readLineInitMessage(Cell[] lineExpe) { + + float[] toGenere = new float[lineExpe.length]; + + String[] expe = new String[lineExpe.length]; + for (int i = 0; i < lineExpe.length; i++) { + expe[i] = (lineExpe[i].getContents()).replaceAll(",", "."); + } + toGenere[0] = 2; // 2 is a compassion message + if (expe[0].equals(new String("threat"))) { + toGenere[0] = 1; // 1 is a threat + } + for (int i = 1; i < lineExpe.length; i++) { + toGenere[i] = (new Float(expe[i])).floatValue(); // series of triplets : low CWW, adherence CWW, up CWW to characteriste the cultural world view of the source + } + return toGenere; + } + +}