# ProfileXYZ.py -- Pamhyr
# Copyright (C) 2023-2024  INRAE
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

# -*- coding: utf-8 -*-

import logging
import numpy as np
from typing import List
from functools import reduce

from tools import timer
from shapely import geometry

from Model.Tools.PamhyrDB import SQLSubModel
from Model.Except import ClipboardFormatError
from Model.Geometry.Profile import Profile
from Model.Geometry.PointXYZ import PointXYZ
from Model.Geometry.Vector_1d import Vector1d

logger = logging.getLogger()


class ProfileXYZ(Profile, SQLSubModel):
    _sub_classes = [
        PointXYZ,
    ]

    def __init__(self,
                 id: int = -1,
                 name: str = "",
                 rk: float = 0.,
                 reach=None,
                 num=0,
                 nb_point: int = 0,
                 code1: int = 0, code2: int = 0,
                 status=None):
        """ProfileXYZ constructor

        Args:
            num: The number of this profile
            code1: The interpolation code 1
            code2: The interpolation code 2
            rk: Kilometer point
            name: The name of profile

        Returns:
            Nothing.
        """
        super(ProfileXYZ, self).__init__(
            id=id,
            num=num,
            name=name,
            rk=rk,
            code1=code1, code2=code2,
            _type="XYZ",
            reach=reach,
            status=status,
        )

    @classmethod
    def _db_create(cls, execute):
        execute("""
          CREATE TABLE geometry_profileXYZ(
            id INTEGER NOT NULL PRIMARY KEY,
            ind INTEGER NOT NULL,
            name TEXT,
            reach INTEGER NOT NULL,
            rk REAL NOT NULL,
            num INTEGER NOT NULL,
            code1 INTEGER NOT NULL,
            code2 INTEGER NOT NULL,
            sl INTEGER,
            FOREIGN KEY(reach) REFERENCES river_reach(id),
            FOREIGN KEY(sl) REFERENCES sedimentary_layer(id)
          )
        """)

        return cls._create_submodel(execute)

    @classmethod
    def _db_update(cls, execute, version):
        major, minor, release = version.strip().split(".")
        if major == minor == "0":
            rl = int(release)
            if rl < 2:
                execute(
                    """
                    ALTER TABLE geometry_profileXYZ
                    ADD COLUMN sl INTEGER
                    REFERENCES sedimentary_layer(id)
                    """
                )

            if rl < 11:
                execute(
                    """
                    ALTER TABLE geometry_profileXYZ
                    RENAME COLUMN kp TO rk
                    """
                )

        return cls._update_submodel(execute, version)

    @classmethod
    def _db_load(cls, execute, data=None):
        profiles = []
        status = data["status"]
        reach = data["reach"]

        table = execute(
            "SELECT id, ind, name, rk, num, code1, code2, sl " +
            "FROM geometry_profileXYZ " +
            f"WHERE reach = {reach.id}"
        )

        for row in table:
            id = row[0]
            ind = row[1]
            name = row[2]
            rk = row[3]
            num = row[5]
            code1 = row[5]
            code2 = row[6]
            sl = row[7]

            new = cls(
                id=id, num=num,
                name=name, rk=rk,
                code1=code1, code2=code2,
                reach=reach,
                status=status
            )

            if sl == -1 or sl is None:
                new._sl = None
            else:
                new._sl = next(
                    filter(
                        lambda s: s.id == sl,
                        data["sediment_layers_list"].sediment_layers
                    )
                )

            data["profile"] = new
            new._points = PointXYZ._db_load(execute, data.copy())

            yield ind, new

    def _db_save(self, execute, data=None):
        ok = True
        ind = data["ind"]

        sl = self._sl.id if self._sl is not None else -1

        sql = (
            "INSERT OR REPLACE INTO " +
            "geometry_profileXYZ(id, ind, name, reach, " +
            "rk, num, code1, code2, sl) " +
            "VALUES (" +
            f"{self.id}, {ind}, '{self._db_format(self._name)}', " +
            f"{self.reach.id}, {self.rk}, {self.num}, " +
            f"{self.code1}, {self.code1}, {sl}" +
            ")"
        )
        execute(sql)

        points = self.points

        data["profile"] = self
        execute(f"DELETE FROM geometry_pointXYZ WHERE profile = {self.id}")

        ind = 0
        for point in points:
            data["ind"] = ind
            ok &= point._db_save(execute, data)
            ind += 1

        return ok

    @classmethod
    def from_data(cls, header, data):
        profile = None
        try:
            if len(header) == 0:
                name = data[0]
                rk = data[1]
                reach = data[2]
                status = data[3]

                profile = cls(
                    id=-1,
                    name=name,
                    rk=rk,
                    reach=reach,
                    status=status
                )
            else:
                valid_header = {'name', 'reach', 'rk', 'status'}
                d = {}
                for i, v in enumerate(data):
                    h = header[i].strip().lower().split(' ')[0]
                    if h in valid_header:
                        d[h] = v

                profile = cls(**d)
        except Exception as e:
            logger.error(e)
            raise ClipboardFormatError(header, data)

        return profile

    def point_from_data(self, header, data):
        def float_format(s: str):
            return float(
                s.replace(",", ".")
            )

        point = None
        try:
            if len(header) == 0:
                x = float_format(data[0])
                y = float_format(data[1])
                z = float_format(data[2])
                name = data[3] if len(data) == 4 else ""

                point = PointXYZ(
                    x, y, z, name, profile=self, status=self._status
                )
            else:
                valid_header = {'name', 'x', 'y', 'z'}
                d = {"status": self._status, "profile": self}
                for i, v in enumerate(data):
                    h = header[i].strip().lower().split(' ')[0]
                    if h in valid_header:
                        d[h] = v

                point = PointXYZ(**d)
        except Exception as e:
            raise ClipboardFormatError(header=header, data=data)

        return point

    def x(self):
        return [point.x for point in self.points]

    def y(self):
        return [point.y for point in self.points]

    def z(self):
        return [point.z for point in self.points]

    def names(self):
        return [point.name for point in self.points]

    def x_max(self):
        return max(self.filter_isnan(self.x()))

    def x_min(self):
        return min(self.filter_isnan(self.x()))

    def y_max(self):
        return max(self.filter_isnan(self.y()))

    def y_min(self):
        return min(self.filter_isnan(self.y()))

    def z_max(self):
        return max(self.filter_isnan(self.z()))

    def z_min(self):
        return min(self.filter_isnan(self.z()))

    def import_points(self, list_points: list):
        """Import a list of points to profile

        Args:
            list_points: Liste of PointXYZ

        Returns:
            Nothing.
        """
        for point in list_points:
            pt = PointXYZ(*point, profile=self, status=self._status)
            self.points.append(pt)
        self._status.modified()

    def get_point_i(self, index: int) -> PointXYZ:
        """Get point at index.

        Args:
            index: Index of point.

        Returns:
            The point.
        """
        try:
            return self.points[index]
        except IndexError:
            raise IndexError(f"Invalid point index: {index}")

    def get_point_by_name(self, name: str) -> PointXYZ:
        """Get point by name.

        Args:
            name: Point name.

        Returns:
            The point.
        """
        try:
            n_name = name.lower().strip()
            return next(
                filter(
                    lambda p: p.name.lower().strip() == n_name,
                    self.points
                )
            )
        except Exception as e:
            logger.debug(f"{e}")
            raise IndexError(
                f"Invalid point name: {name} " +
                f"for profile ({self.id}) rk = {self.rk}"
            )

    def has_standard_named_points(self):
        l, r = reduce(
            lambda acc, n: (
                (acc[0] | (n == "rg")),
                (acc[1] | (n == "rd"))
            ),
            map(lambda p: p.name.lower().strip(),
                self.points),
            (False, False)
        )

        return l & r

    def add(self):
        """Add a new PointXYZ to profile.

        Returns:
            Nothing.
        """
        point_xyz = PointXYZ(0., 0., 0., profile=self, status=self._status)
        self.points.append(point_xyz)
        self._status.modified()

    def insert(self, index: int):
        """Insert a new point at index.

        Args:
            index: The index of new profile.

        Returns:
            The new point.
        """
        point = PointXYZ(0., 0., 0., profile=self, status=self._status)
        self.points.insert(index, point)
        self._status.modified()
        return point

    def filter_isnan(self, lst):
        """Returns the input list without 'nan' element

        Args:
            lst: The list to filter

        Returns:
            The list without 'nan'
        """
        return [x for x in lst if not np.isnan(x)]

    def speed(self, q, z):
        area = self.wet_area(z)

        if area == 0:
            return 0

        return q / area

    def width_approximation(self):
        if self.has_standard_named_points():
            rg = self.get_point_by_name("rg")
            rd = self.get_point_by_name("rd")
        else:
            rg = self.points[0]
            rd = self.points[-1]

        return abs(rg.dist(rd))

    def wet_width(self, z):
        start, end = self.get_all_water_limits_ac(z)

        if len(start) == 0:
            return 0

        length = 0.0
        for s, e in zip(start, end):
            length += abs(s - e)
        return length

    def wet_perimeter(self, z):
        lines = self.wet_lines(z)

        if lines is None:
            return 0

        length = 0.0
        for line in lines:
            length += line.length
        return length

    def wet_area(self, z):
        lines = self.wet_lines(z)

        if lines is None:
            return 0

        area = 0.0
        for line in lines:
            if len(line.coords) > 2:
                poly = geometry.Polygon(line)
                area += poly.area
        return area

    def wet_radius(self, z):
        p = self.wet_perimeter(z)
        a = self.wet_area(z)

        if p == 0:
            return 0

        return a/p

    def wet_line(self, z):
        points = self.wet_points(z)
        if len(points) < 3:
            return None

        zz = map(lambda p: p.z, points)
        station = self._get_station(points)

        line = geometry.LineString(list(zip(station, zz)))
        return line

    def wet_lines(self, z):
        points = self._points
        if len(points) < 3:
            return None

        lines = []

        zz = list(map(lambda p: p.z, points))
        station = self._get_station(points)

        line = []
        for i in range(self.number_points-1):

            if zz[i] >= z and zz[i+1] < z:
                y = np.interp(
                    z,
                    [zz[i], zz[i+1]],
                    [station[i], station[i+1]]
                )
                line.append([y, z])

            if zz[i] < z:
                line.append([station[i], zz[i]])

            if zz[i] <= z and zz[i+1] >= z:
                y = np.interp(
                    z,
                    [zz[i], zz[i+1]],
                    [station[i], station[i+1]]
                )
                line.append([y, z])
                if len(line) > 2:
                    lines.append(geometry.LineString(line))
                line = []

        if zz[self.number_points-1] < z:
                line.append([station[self.number_points-1], z])
                if len(line) > 2:
                    lines.append(geometry.LineString(line))
                line = []

        return lines

    def max_water_depth(self, z):
        return z - self.z_min()

    def mean_water_depth(self, z):
        a = self.wet_area(z)
        w = self.wet_width(z)

        if w == 0:
            return 0

        return a/w

    def wet_polygon(self, z):
        points = self.wet_points(z)
        if len(points) < 3:
            return None

        zz = map(lambda p: p.z, points)
        station = self._get_station(points)

        poly = geometry.Polygon(list(zip(station, zz)))
        return poly

    def wet_points(self, z):
        left, right = self.get_water_limits(z)

        points = list(filter(lambda p: p.z < z, self._points))
        points = [left] + points + [right]
        points = sorted(points, key=lambda p: p.x)

        return points

    def get_nb_wet_areas(self, z):

        n_zones = 0
        points = self._points
        if points[0].z <= z:
            n_zones += 1

        for i in range(self.number_points-1):
            if points[i].z > z and points[i+1].z <= z:
                n_zones += 1

        return n_zones

    def get_all_water_limits_ac(self, z):
        """
        Determine all water limits for z elevation.
        """

        points = self._points
        if len(points) < 3:
            return None

        zz = list(map(lambda p: p.z, points))
        station = self._get_station(points)

        start = []
        if points[0].z <= z:
            start.append(station[0])

        for i in range(self.number_points-1):
            if zz[i] > z and zz[i+1] <= z:
                y = np.interp(
                    z,
                    [zz[i], zz[i+1]],
                    [station[i], station[i+1]]
                )
                start.append(y)

        end = []
        if points[-1].z <= z:
            end.append(station[-1])

        for i in reversed(range(self.number_points-1)):
            if zz[i] <= z and zz[i+1] > z:
                y = np.interp(
                    z,
                    [zz[i], zz[i+1]],
                    [station[i], station[i+1]]
                )
                end.append(y)

        if len(start) != len(end):
            logger.error(f"ERROR in get_all_water_limits_ac")
            return [], []

        return start, list(reversed(end))

    def get_water_limits(self, z):
        """
        Determine left and right limits of water elevation.
        """

        # Get the index of first point with elevation lesser than water
        # elevation (for the right and left river side)
        i_left = -1
        i_right = -1

        for i in range(self.number_points):
            if self.point(i).z <= z:
                i_left = i
                break

        for i in reversed(range(self.number_points)):
            if self.point(i).z <= z:
                i_right = i
                break

        # Interpolate points at river left side
        if (i_left > 0):
            x = np.interp(
                z,
                [self.point(i_left).z, self.point(i_left - 1).z],
                [self.point(i_left).x, self.point(i_left - 1).x]
            )
            y = np.interp(
                z,
                [self.point(i_left).z, self.point(i_left - 1).z],
                [self.point(i_left).y, self.point(i_left - 1).y]
            )
            pt_left = PointXYZ(x, y, z, name="wl_left")
        else:
            pt_left = self.point(0)

        # Interpolate points at river right side
        if (i_right < self.number_points - 1):
            x = np.interp(
                z,
                [self.point(i_right).z, self.point(i_right + 1).z],
                [self.point(i_right).x, self.point(i_right + 1).x]
            )
            y = np.interp(
                z,
                [self.point(i_right).z, self.point(i_right + 1).z],
                [self.point(i_right).y, self.point(i_right + 1).y]
            )
            pt_right = PointXYZ(x, y, z, name="wl_right")
        else:
            pt_right = self.point(self.number_points - 1)

        return pt_left, pt_right

    def get_station(self):
        """Projection of the points of the profile on a plane.

        Args:
            self: The profile

        Returns:
            Projection of the points of the profile on a plane.
        """
        if self.nb_points < 3:
            return None
        else:
            return self._get_station(self.points)

    @timer
    def _get_station(self, points):
        first_named_point = None
        index_first_named_point = None
        last_named_point = None

        first_point_not_nan = self._first_point_not_nan(points)
        last_point_not_nan = self._last_point_not_nan(points)

        for index, point in enumerate(points):
            if point.point_is_named():
                index_first_named_point = index
                first_named_point = point
                break

        for point in reversed(points):
            if point.point_is_named():
                last_named_point = point
                break

        station = []
        constant = 0.0

        if (first_named_point is not None
                and last_named_point is not None):
            if (first_named_point != last_named_point
                    and first_named_point.x != last_named_point.x):
                vector = Vector1d(first_named_point, last_named_point)
                norm_dir_vec = vector.normalized_direction_vector()
            else:
                vector = Vector1d(first_point_not_nan, last_point_not_nan)
                norm_dir_vec = vector.normalized_direction_vector()

            for point in points:
                xi = point.x - first_named_point.x
                yi = point.y - first_named_point.y
                station_i = (norm_dir_vec[0] * xi +
                             norm_dir_vec[1] * yi)
                station.append(station_i)

            constant = station[index_first_named_point]
        elif first_named_point is None:
            vector = Vector1d(first_point_not_nan, last_point_not_nan)
            norm_dir_vec = vector.normalized_direction_vector()

            for point in points:
                xi = point.x - first_point_not_nan.x
                yi = point.y - first_point_not_nan.y
                station_i = (norm_dir_vec[0] * xi +
                             norm_dir_vec[1] * yi)
                station.append(station_i)

            z_min = self.z_min()
            index_profile_z_min = next(
                filter(
                    lambda z: z[1] == z_min,
                    enumerate(self.z())
                )
            )
            constant = station[index_profile_z_min[0]]

        return list(map(lambda s: s - constant, station))

    def _first_point_not_nan(self, points):
        first_point = None

        for point in points:
            if not point.is_nan():
                first_point = point
                break

        return first_point

    def _last_point_not_nan(self, points):
        last_point = None

        for point in reversed(points):
            if not point.is_nan():
                last_point = point
                break

        return last_point

    def purge(self, np_purge):
        """
        Remove points to keep at most np_purge points.
        """
        if (self.nb_points <= np_purge):
            return

        nb_named = 2   # we consider the first and last point as named
        area = [0.0]

        for i in range(1, self.nb_points-1):
            if self.point(i).point_is_named():
                area.append(9999999.999)
                nb_named += 1
            else:
                area.append(
                    PointXYZ.areatriangle3d(
                        self.point(i-1),
                        self.point(i),
                        self.point(i+1))
                )

        area.append(0.0)

        while self.nb_points > max(np_purge, nb_named):
            to_rm = np.argmin(area[1:self.nb_points - 1]) + 1

            self.delete_i([to_rm])
            area.pop(to_rm)

            for i in [to_rm-1, to_rm]:
                if (i == 0):
                    continue

                if (i == self.nb_points - 1):
                    continue

                if self.point(i).point_is_named():
                    area[i] = 9999999.999
                else:
                    area[i] = PointXYZ.areatriangle3d(
                        self.point(i-1),
                        self.point(i),
                        self.point(i+1)
                    )

    def shift(self, x, y, z):
        for p in self.points:
            p.x = p.x + x
            p.y = p.y + y
            p.z = p.z + z