# ProfileXYZ.py -- Pamhyr # Copyright (C) 2023-2024 INRAE # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. # -*- coding: utf-8 -*- import logging import numpy as np from typing import List from functools import reduce from tools import timer from shapely import geometry from Model.Tools.PamhyrDB import SQLSubModel from Model.Except import ClipboardFormatError from Model.Geometry.Profile import Profile from Model.Geometry.PointXYZ import PointXYZ from Model.Geometry.Vector_1d import Vector1d logger = logging.getLogger() class ProfileXYZ(Profile, SQLSubModel): _sub_classes = [ PointXYZ, ] def __init__(self, id: int = -1, name: str = "", rk: float = 0., reach=None, num=0, nb_point: int = 0, code1: int = 0, code2: int = 0, status=None): """ProfileXYZ constructor Args: num: The number of this profile code1: The interpolation code 1 code2: The interpolation code 2 rk: Kilometer point name: The name of profile Returns: Nothing. """ super(ProfileXYZ, self).__init__( id=id, num=num, name=name, rk=rk, code1=code1, code2=code2, _type="XYZ", reach=reach, status=status, ) @classmethod def _db_create(cls, execute): execute(""" CREATE TABLE geometry_profileXYZ( id INTEGER NOT NULL PRIMARY KEY, ind INTEGER NOT NULL, name TEXT, reach INTEGER NOT NULL, rk REAL NOT NULL, num INTEGER NOT NULL, code1 INTEGER NOT NULL, code2 INTEGER NOT NULL, sl INTEGER, FOREIGN KEY(reach) REFERENCES river_reach(id), FOREIGN KEY(sl) REFERENCES sedimentary_layer(id) ) """) return cls._create_submodel(execute) @classmethod def _db_update(cls, execute, version): major, minor, release = version.strip().split(".") if major == minor == "0": rl = int(release) if rl < 2: execute( """ ALTER TABLE geometry_profileXYZ ADD COLUMN sl INTEGER REFERENCES sedimentary_layer(id) """ ) if rl < 11: execute( """ ALTER TABLE geometry_profileXYZ RENAME COLUMN kp TO rk """ ) return cls._update_submodel(execute, version) @classmethod def _db_load(cls, execute, data=None): profiles = [] status = data["status"] reach = data["reach"] table = execute( "SELECT id, ind, name, rk, num, code1, code2, sl " + "FROM geometry_profileXYZ " + f"WHERE reach = {reach.id}" ) for row in table: id = row[0] ind = row[1] name = row[2] rk = row[3] num = row[5] code1 = row[5] code2 = row[6] sl = row[7] new = cls( id=id, num=num, name=name, rk=rk, code1=code1, code2=code2, reach=reach, status=status ) if sl == -1 or sl is None: new._sl = None else: new._sl = next( filter( lambda s: s.id == sl, data["sediment_layers_list"].sediment_layers ) ) data["profile"] = new new._points = PointXYZ._db_load(execute, data.copy()) yield ind, new def _db_save(self, execute, data=None): ok = True ind = data["ind"] sl = self._sl.id if self._sl is not None else -1 sql = ( "INSERT OR REPLACE INTO " + "geometry_profileXYZ(id, ind, name, reach, " + "rk, num, code1, code2, sl) " + "VALUES (" + f"{self.id}, {ind}, '{self._db_format(self._name)}', " + f"{self.reach.id}, {self.rk}, {self.num}, " + f"{self.code1}, {self.code1}, {sl}" + ")" ) execute(sql) points = self.points data["profile"] = self execute(f"DELETE FROM geometry_pointXYZ WHERE profile = {self.id}") ind = 0 for point in points: data["ind"] = ind ok &= point._db_save(execute, data) ind += 1 return ok @classmethod def from_data(cls, header, data): profile = None try: if len(header) == 0: name = data[0] rk = data[1] reach = data[2] status = data[3] profile = cls( id=-1, name=name, rk=rk, reach=reach, status=status ) else: valid_header = {'name', 'reach', 'rk', 'status'} d = {} for i, v in enumerate(data): h = header[i].strip().lower().split(' ')[0] if h in valid_header: d[h] = v profile = cls(**d) except Exception as e: logger.error(e) raise ClipboardFormatError(header, data) return profile def point_from_data(self, header, data): def float_format(s: str): return float( s.replace(",", ".") ) point = None try: if len(header) == 0: x = float_format(data[0]) y = float_format(data[1]) z = float_format(data[2]) name = data[3] if len(data) == 4 else "" point = PointXYZ( x, y, z, name, profile=self, status=self._status ) else: valid_header = {'name', 'x', 'y', 'z'} d = {"status": self._status, "profile": self} for i, v in enumerate(data): h = header[i].strip().lower().split(' ')[0] if h in valid_header: d[h] = v point = PointXYZ(**d) except Exception as e: raise ClipboardFormatError(header=header, data=data) return point def x(self): return [point.x for point in self.points] def y(self): return [point.y for point in self.points] def z(self): return [point.z for point in self.points] def names(self): return [point.name for point in self.points] def x_max(self): return max(self.filter_isnan(self.x())) def x_min(self): return min(self.filter_isnan(self.x())) def y_max(self): return max(self.filter_isnan(self.y())) def y_min(self): return min(self.filter_isnan(self.y())) def z_max(self): return max(self.filter_isnan(self.z())) def z_min(self): return min(self.filter_isnan(self.z())) def import_points(self, list_points: list): """Import a list of points to profile Args: list_points: Liste of PointXYZ Returns: Nothing. """ for point in list_points: pt = PointXYZ(*point, profile=self, status=self._status) self.points.append(pt) self._status.modified() def get_point_i(self, index: int) -> PointXYZ: """Get point at index. Args: index: Index of point. Returns: The point. """ try: return self.points[index] except IndexError: raise IndexError(f"Invalid point index: {index}") def get_point_by_name(self, name: str) -> PointXYZ: """Get point by name. Args: name: Point name. Returns: The point. """ try: n_name = name.lower().strip() return next( filter( lambda p: p.name.lower().strip() == n_name, self.points ) ) except Exception as e: logger.debug(f"{e}") raise IndexError( f"Invalid point name: {name} " + f"for profile ({self.id}) rk = {self.rk}" ) def has_standard_named_points(self): l, r = reduce( lambda acc, n: ( (acc[0] | (n == "rg")), (acc[1] | (n == "rd")) ), map(lambda p: p.name.lower().strip(), self.points), (False, False) ) return l & r def add(self): """Add a new PointXYZ to profile. Returns: Nothing. """ point_xyz = PointXYZ(0., 0., 0., profile=self, status=self._status) self.points.append(point_xyz) self._status.modified() def insert(self, index: int): """Insert a new point at index. Args: index: The index of new profile. Returns: The new point. """ point = PointXYZ(0., 0., 0., profile=self, status=self._status) self.points.insert(index, point) self._status.modified() return point def filter_isnan(self, lst): """Returns the input list without 'nan' element Args: lst: The list to filter Returns: The list without 'nan' """ return [x for x in lst if not np.isnan(x)] def speed(self, q, z): area = self.wet_area(z) if area == 0: return 0 return q / area def width_approximation(self): if self.has_standard_named_points(): rg = self.get_point_by_name("rg") rd = self.get_point_by_name("rd") else: rg = self.points[0] rd = self.points[-1] return abs(rg.dist(rd)) def wet_width(self, z): start, end = self.get_all_water_limits_ac(z) if len(start) == 0: return 0 length = 0.0 for s, e in zip(start, end): length += abs(s - e) return length def wet_perimeter(self, z): lines = self.wet_lines(z) if lines is None: return 0 length = 0.0 for line in lines: length += line.length return length def wet_area(self, z): lines = self.wet_lines(z) if lines is None: return 0 area = 0.0 for line in lines: if len(line.coords) > 2: poly = geometry.Polygon(line) area += poly.area return area def wet_radius(self, z): p = self.wet_perimeter(z) a = self.wet_area(z) if p == 0: return 0 return a/p def wet_line(self, z): points = self.wet_points(z) if len(points) < 3: return None zz = map(lambda p: p.z, points) station = self._get_station(points) line = geometry.LineString(list(zip(station, zz))) return line def wet_lines(self, z): points = self._points if len(points) < 3: return None lines = [] zz = list(map(lambda p: p.z, points)) station = self._get_station(points) line = [] for i in range(self.number_points-1): if zz[i] >= z and zz[i+1] < z: y = np.interp( z, [zz[i], zz[i+1]], [station[i], station[i+1]] ) line.append([y, z]) if zz[i] < z: line.append([station[i], zz[i]]) if zz[i] <= z and zz[i+1] >= z: y = np.interp( z, [zz[i], zz[i+1]], [station[i], station[i+1]] ) line.append([y, z]) if len(line) > 2: lines.append(geometry.LineString(line)) line = [] if zz[self.number_points-1] < z: line.append([station[self.number_points-1], z]) if len(line) > 2: lines.append(geometry.LineString(line)) line = [] return lines def max_water_depth(self, z): return z - self.z_min() def mean_water_depth(self, z): a = self.wet_area(z) w = self.wet_width(z) if w == 0: return 0 return a/w def wet_polygon(self, z): points = self.wet_points(z) if len(points) < 3: return None zz = map(lambda p: p.z, points) station = self._get_station(points) poly = geometry.Polygon(list(zip(station, zz))) return poly def wet_points(self, z): left, right = self.get_water_limits(z) points = list(filter(lambda p: p.z < z, self._points)) points = [left] + points + [right] points = sorted(points, key=lambda p: p.x) return points def get_nb_wet_areas(self, z): n_zones = 0 points = self._points if points[0].z <= z: n_zones += 1 for i in range(self.number_points-1): if points[i].z > z and points[i+1].z <= z: n_zones += 1 return n_zones def get_all_water_limits_ac(self, z): """ Determine all water limits for z elevation. """ points = self._points if len(points) < 3: return None zz = list(map(lambda p: p.z, points)) station = self._get_station(points) start = [] if points[0].z <= z: start.append(station[0]) for i in range(self.number_points-1): if zz[i] > z and zz[i+1] <= z: y = np.interp( z, [zz[i], zz[i+1]], [station[i], station[i+1]] ) start.append(y) end = [] if points[-1].z <= z: end.append(station[-1]) for i in reversed(range(self.number_points-1)): if zz[i] <= z and zz[i+1] > z: y = np.interp( z, [zz[i], zz[i+1]], [station[i], station[i+1]] ) end.append(y) if len(start) != len(end): logger.error(f"ERROR in get_all_water_limits_ac") return [], [] return start, list(reversed(end)) def get_water_limits(self, z): """ Determine left and right limits of water elevation. """ # Get the index of first point with elevation lesser than water # elevation (for the right and left river side) i_left = -1 i_right = -1 for i in range(self.number_points): if self.point(i).z <= z: i_left = i break for i in reversed(range(self.number_points)): if self.point(i).z <= z: i_right = i break # Interpolate points at river left side if (i_left > 0): x = np.interp( z, [self.point(i_left).z, self.point(i_left - 1).z], [self.point(i_left).x, self.point(i_left - 1).x] ) y = np.interp( z, [self.point(i_left).z, self.point(i_left - 1).z], [self.point(i_left).y, self.point(i_left - 1).y] ) pt_left = PointXYZ(x, y, z, name="wl_left") else: pt_left = self.point(0) # Interpolate points at river right side if (i_right < self.number_points - 1): x = np.interp( z, [self.point(i_right).z, self.point(i_right + 1).z], [self.point(i_right).x, self.point(i_right + 1).x] ) y = np.interp( z, [self.point(i_right).z, self.point(i_right + 1).z], [self.point(i_right).y, self.point(i_right + 1).y] ) pt_right = PointXYZ(x, y, z, name="wl_right") else: pt_right = self.point(self.number_points - 1) return pt_left, pt_right def get_station(self): """Projection of the points of the profile on a plane. Args: self: The profile Returns: Projection of the points of the profile on a plane. """ if self.nb_points < 3: return None else: return self._get_station(self.points) @timer def _get_station(self, points): first_named_point = None index_first_named_point = None last_named_point = None first_point_not_nan = self._first_point_not_nan(points) last_point_not_nan = self._last_point_not_nan(points) for index, point in enumerate(points): if point.point_is_named(): index_first_named_point = index first_named_point = point break for point in reversed(points): if point.point_is_named(): last_named_point = point break station = [] constant = 0.0 if (first_named_point is not None and last_named_point is not None): if (first_named_point != last_named_point and first_named_point.x != last_named_point.x): vector = Vector1d(first_named_point, last_named_point) norm_dir_vec = vector.normalized_direction_vector() else: vector = Vector1d(first_point_not_nan, last_point_not_nan) norm_dir_vec = vector.normalized_direction_vector() for point in points: xi = point.x - first_named_point.x yi = point.y - first_named_point.y station_i = (norm_dir_vec[0] * xi + norm_dir_vec[1] * yi) station.append(station_i) constant = station[index_first_named_point] elif first_named_point is None: vector = Vector1d(first_point_not_nan, last_point_not_nan) norm_dir_vec = vector.normalized_direction_vector() for point in points: xi = point.x - first_point_not_nan.x yi = point.y - first_point_not_nan.y station_i = (norm_dir_vec[0] * xi + norm_dir_vec[1] * yi) station.append(station_i) z_min = self.z_min() index_profile_z_min = next( filter( lambda z: z[1] == z_min, enumerate(self.z()) ) ) constant = station[index_profile_z_min[0]] return list(map(lambda s: s - constant, station)) def _first_point_not_nan(self, points): first_point = None for point in points: if not point.is_nan(): first_point = point break return first_point def _last_point_not_nan(self, points): last_point = None for point in reversed(points): if not point.is_nan(): last_point = point break return last_point def purge(self, np_purge): """ Remove points to keep at most np_purge points. """ if (self.nb_points <= np_purge): return nb_named = 2 # we consider the first and last point as named area = [0.0] for i in range(1, self.nb_points-1): if self.point(i).point_is_named(): area.append(9999999.999) nb_named += 1 else: area.append( PointXYZ.areatriangle3d( self.point(i-1), self.point(i), self.point(i+1)) ) area.append(0.0) while self.nb_points > max(np_purge, nb_named): to_rm = np.argmin(area[1:self.nb_points - 1]) + 1 self.delete_i([to_rm]) area.pop(to_rm) for i in [to_rm-1, to_rm]: if (i == 0): continue if (i == self.nb_points - 1): continue if self.point(i).point_is_named(): area[i] = 9999999.999 else: area[i] = PointXYZ.areatriangle3d( self.point(i-1), self.point(i), self.point(i+1) ) def shift(self, x, y, z): for p in self.points: p.x = p.x + x p.y = p.y + y p.z = p.z + z