Developers documentation
Version: v0.0.7
Table of Contents
This document is for the use of developers. It describes the project architecture, the tools available to assist development and debugging. It also describes the procedures for creating packages and the configurations required to set up the gitlab runners. Finally, this document explains how documentation is written and modified, and how to contribute to the project by modifying, improving or adding documentation, translations or code.
1 Introduction
Pamhyr2 is free and open source software (FOSS) graphical user
interface (GUI) for 1D hydro-sedimentary modelling of rivers developed
in Python (with version 3.8). It use PyQt at version 5 and matplotlib
in version 3.4.1 or later for the user insterface (see
/requirements.txt
for details). The architecture of
project code follow the Qt Model/View architecture 1 (see
details in section 2). Pamhyr2 packages can be build
manually (see section 3.1), but there are automatically
build with the gitlab-ci (see the section 3.2). Documentation files are written with org-mode2,
let see section 4. Finally, to see the contribution
rules, see the section 5.
2 Architecture
Pamhyr2's architecture is based on Qt Model/View, see Figure 1. It is made up of several different components: the model (in blue), the graphical components (in red), the actions/delegates (in green), the commands (in purple), the solvers (in yellow) and the save file (in grey).
The model is a set of python classes and can be exported to a single SQLite3 format backup file. The view can be made up of various components, generally a Qt window with other view components, such as: a table, a text box, a button, a plot, and so on. The user can view the data using the view and interact with certain components. These components are linked to an action (such as a Python function) or to a delegate class. These actions or delegate can create a command (based on Qt UndoCommand class), this command must implement two functions: One to modify the model, one to reverte this modification and reset the model to previous state. All model modification must be perform by a command to be cancelled. The user can also run a solver and add some simulation results to model data.
Figure 1: Pamhyr2 Model/View architecture scheme (inspired by Qt Model/View architecture https://doc.qt.io/qt-5/model-view-programming.html)
All the model source code are in the directory src/Model
(let see section 2.1 for more details), the View components,
delegate and command are in src/View
(see section 2.2). Solvers classes are
in src/Solver
(see section 2.3).
The following sub section show examples of main Pamhyr2 internal class for view componants, but this documentation is not exhaustive, be free to watch existing code for more details and examples. In, addition some features are not factorise and must be implemented from scratch (directly with Qt for example).
2.1 Model
The model is a set of Python classes. In Pamhyr2, this classes must
respect some constraint. Each model class must inherits
Model.Tools.SQLSubModel
abstract class, except the Model.Study
class who inherits Model.Tools.SQLModel
(see 2.1.1).
The model entry point is the Study class. It contains infomation about
the study: their name, description, time system, and so on. Their
contains a River object too. This river object inherits the network
graph and contains a list of RiverNode
and a list of RiverReach
(an edge who contains a source node, and destination node).
RiverReach
contrains geometry, so, the river network (node and edge)
associated with the geometry forms the basis of the model, and the
other components are linked to one of these basic components.
Figure 2: Pamhyr2 model class dependencies (A -> B means A can contain references to B)
2.1.1 SQL
The model must be export to a database file to create a study save
file. This file use SQLite33 format and the extention
.pamhyr
. So, each model componante must be register into this study
file. To create, update, set and get information into SQLite database
we use SQL command. The database use version number and some
modification could be perform to update database. For each model
componante, correspond one or more SQL table to store information. To
normalize the interaction with database we made two classes, SQLModel
and SQLSubModel. The Study class use SQLModel because is the top of
the model hierachy. The rest of model class inherits to SQLSubModel.
A class who inherits SQLSubModel, must implement some methods:
_sql_create
: Class method to create the database scheme_sql_update
: Class method to update the database scheme if necessary_sql_load
: Class method to load data from DB_sql_save
: Method to save current object into DB
Class method take in arguments: The class (cls
), a function to
execute SQL command into the database (execute
). In addition, the
update method take the previous version of database, load method take
an optional arguments data
if additional infomation ar needed, and
who can contains whatever you want. The method save take in arguments
the current object (self
), a function to execute SQL command into
the database (execute
), and optional data (data
).
The class who inherits SQLSubModel can also define an class attribute
_sub_classes
to set a formal class dependencies into database. This
attribute is use at database creation to create all table, and at
update to update all the database table. Let see examples of
SQLSubModel usage for two classes Foo and Bar with Foo contains list
of Bar (Listing 1 and 2).
from Model.Tools.PamhyrDB import SQLSubModel class Bar(SQLSubModel): _id_cnt = 0 def __init__(self, id = -1, x = 0, y = 0): self._x = x self._y = y if id == -1: self.id = Bar._id_cnt + 1 else: self.id = id Bar._id_cnt = max(id, Bar._id_cnt+1) @classmethod def _sql_create(cls, execute): execute(""" CREATE TABLE bar ( id INTEGER NOT NULL PRIMARY KEY, x INTEGER NOT NULL, y INTEGER NOT NULL, foo_id INTEGER NOT NULL, FOREIGN KEY(foo_id) REFERENCES foo(id), )""") return True @classmethod def _sql_update(cls, execute, version): # If version is lesser than 0.0.2, add column to bar table major, minor, release = version.strip().split(".") if major == minor == "0": if int(release) < 2: execute("ALTER TABLE bar ADD COLUMN y INTEGER") return True @classmethod def _sql_load(cls, execute, data = None): new = [] table = execute( f"SELECT id, x, y FROM bar WHERE foo_id = {data['id']}" ) for row in table: bar = cls( id = row[0], x = row[1], y = row[2], ) new.append(bar) return new def _sql_save(self, execute, data = None): execute("INSERT INTO bar (id,x,y,foo_id) VALUES " + f"({self.id}, {self._x}, {self._y}, {data['id']})")
class Foo(SQLSubModel): _id_cnt = 0 _sub_classes = [Bar] def __init__(self, id = -1, name = ""): self._name = name self._bar = [] # ... @classmethod def _sql_create(cls, execute): execute(""" CREATE TABLE foo ( id INTEGER NOT NULL PRIMARY KEY, name TEXT NOT NULL, ) """) return cls._create_submodel(execute) @classmethod def _sql_update(cls, excute, version): return cls._update_submodel(execute, version) @classmethod def _sql_load(cls, execute, data = None): new = [] table = execute( "SELECT id, name FROM foo" ) for row in table: foo = cls( id = row[0], name = row[1], ) data = { "id": row[0], # Current Foo ID } foo._bar = Bar._sql_load(execute, data=data) new.append(foo) return new def _sql_save(self, execute, data = None): execute(f"DELETE FROM foo WHERE id = {self.id}") execute(f"DELETE FROM bar WHERE foo_id = {self.id}") # Save new data execute(f"INSERT INTO bar (id,name) VALUES ({self.id}, {self._name})") data = {"id": self.id} for bar in self._bar: bar._sql_save(execute, data=data)
Let see the results database scheme for Pamhyr2 at version v0.0.7 in Figure 3.
Figure 3: SQLite database scheme at Pamhyr2 version v0.0.7 (generate with https://gitlab.com/Screwtapello/sqlite-schema-diagram)
2.1.2 List class
A abstract class PamhyrModelList is available and provide some of basic methods for object list in Model. This abstract class implement some classic action in View like: insert new object, delete object, sort, move object up, move object down, and so on. An variant exists for multiple list with same type of object, each sublist is called tab, because in View, this kind of list si prensented in different table PamhyrModelListWithTab.
2.1.3 Dict class
A abstract class PamhyrModelDict is available and provide some of basic methods for object dictionary in Model. This class is like PamhyrModelList but use a dictionary instead of list.
2.2 View
Pamhyr2 use Qt as graphical user interface library with the application "Qt designer" for windows or widget creation (see 2.2.1) and "Qt linguist" for interface translate (see 2.2.2). In addition, we use matplotlib as ploting library (see 2.2.6).
Typically, each model componant have an associated window in
application to add, delete or edit this componant. At top level of
View directory we found the MainWindow.py
file and some
sub-directories. A view sub-directory contains: A Window.py
file, a
Table.py
file with table model definition if nessessary, one or more
Plot*.py
file with plot class definition, a translate.py
file with
componant translate, and possible other files or sub-directories.
2.2.1 UI file
We define as possible all Pamhyr2 windows and custom widgets with "Qt
designer". This application generate UI file who describes interface
organisation with table, layout, button, etc. This method is faster
than hand made windows and widget creation, and saves us some purely
descriptive code. The UI files are saved into src/View/ui
for
window, and /src/View/ui/Widgets
for custom widget.
2.2.2 Translate
from PyQt5.QtCore import QCoreApplication from View.Tools.PamhyrTranslate import PamhyrTranslate _translate = QCoreApplication.translate class MyTranslate(PamhyrTranslate): def __init__(self): super(MyTranslate, self).__init__() # Add traduction to global dictionary self._dict["My"] = _translate("My", "FooBar") # Add an additional translate dictionary self._sub_dict["table_headers"] = { "foo": _translate("My", "Foo"), "bar": _translate("My", "Bar"), "baz": _translate("My", "Baz"), }
2.2.3 Window
The abstract class PamhyrWindow and PamhyrDialog are used for most of Pamhyr2 window. These class allow to create an window for Pamhyr2 GUI and implemente some useful methods. The super class method difine some generic value from optional parameters, for examples:
self._study
: The study giving in constructor parametersstudy
(typically aModel.Study
class object)self._config
: The configuration giving in constructor parametersconfig
(typically aConfig
class object)self._trad
: The traductor dictionary giving in constructor parameterstrad
(typically aModel.Tools.PamhyrTranslate
class object)
from View.Tools.PamhyrWindow import PamhyrWindow from View.My.Translate import MyTranslate from View.My.Table import MyTableModel class MyWindow(PamhyrWindow): _pamhyr_ui = "MyUI" _pamhyr_name = "My window" def __init__(self, study=None, config=None, my_data=None, parent=None): self._my_data = my_data super(MyWindow, self).__init__( # Window title title = self._pamhyr_name + " - " + study.name, # Window standard data study = study, config = config, trad = MyTranslate(), parent = parent, # Activate undo/redo and copy/paste shortcut options = ["undo", "copy"] ) # Add custom data to hash window computation self._hash_data.append(self._my_data) # Setup custom window components self.setup_table() self.setup_connections() def setup_table(self): # Init table(s)... def setup_connections(self): # Init action connection(s)... # ...
Typically we called method setup_*
, the method to initialize some
window componants or connections.
2.2.4 Table
An abstract class PamhyrTableModel is available to define a simple
QAbstractTableModel shortly. In simple cases, there are only data
and setData
methode to implement, but the constructor needs more
information than a classic QAbstractTableModel class.
from View.Tools.PamhyrTable import PamhyrTableModel class MyTableModel(PamhyrTableModel): def data(self, index, role): # Retrun data at INDEX... @pyqtSlot() def setData(self, index, value, role=Qt.EditRole): # Set VALUE at INDEX...
# Table model creation (Window.py: setup_table) table_headers = self._trad.get_dict("table_headers") self._model = MyTableModel( table_view = table, # The table view object table_headers = table_headers, # The table column headers dict # (with traduction) editable_headers = ["foo", "bar"], # List of editable column name delegates = { "bar": self.my_delegate, # Custom delegate for column 'bar' }, data = self._my_lst, # The data undo = self._undo_stack, # The window undo command stack )
2.2.5 UndoCommand
All model modification must be done by an QUndoCommand, this command allow to undo and redo an action. This a Qt class wi can inherit to define custom undo command (see example Listing 7)
class AddNodeCommand(QUndoCommand): def __init__(self, graph, node): QUndoCommand.__init__(self) self._graph = graph self._node = node def undo(self): self._graph.remove_node(self._node.name) def redo(self): self._graph.insert_node(self._node)
All undo command must be push into a QUndoStack
(see Listing
8) to perform the action and allow user undo and redo this
action. In PamhyrWindow (and PamhyrDialog) the undo stack is
automatically create if the option "undo"
is activate at window
creation, this stack is accessible at self._undo_stack
.
self._undo_stack.push( AddNodeCommand( self._graph, node ) )
2.2.6 Plot
To define a new plot you can create a class who inherit to PamhyrPlot. The creator need at leaste five argument:
- A
canvas
of typeMplCanvas
- A (optional)
trad
of typePamhyrTranslate
- A
data
used indraw
andupdate
to create and update the plot - A optional
toolbar
of typePamhyrToolbar
- A
parent
window
This class must implement two method draw
and update
, the first
method to draw the plot from scratch, the second to update the plot if
data has changed.
from View.Tools.PamhyrPlot import PamhyrPlot class MyPlot(PamhyrPlot): def __init__(self, canvas=None, trad=None, toolbar=None data=None, parent=None): super(MyPlot, self).__init__( canvas=canvas, trad=trad, data=data, toolbar=toolbar, parent=parent ) self.label_x = self._trad["x"] self.label_y = self._trad["y"] # Optional configuration self._isometric_axis = False self._auto_relim_update = True self._autoscale_update = True def draw(self): # Draw function code... def update(self): # Update function code... def clear(self): # Clear plot values... # ...
2.3 Solver
The Pamhyr2 architecture allow to define multiple solver. A solver is define by a:
- type
- name
- description,
- path
- command line pattern
- (optional) input formater path
- (optional) input formater command line
- (optional) output formater path
- (optional) output formater command line
Let see Figure 4, the application can implement different solver type, this solver type implement the code for export study to solver input format, and read the solver output to study results. There exists a generic solver with a generic input and output format, the type could be use to use a solver not implemented in Pamhyr2, but this solver must can read/write input and output generic format or use external script. There is possible to define different solver with the same type, for example two differents version of the same solver. Finaly, with input and output formater is possible to execute a code on distant computer, for example, over ssh.
Figure 4: Scheme of multiple solver configured, one Rubarbe solver and two Mage solver with one on local machine and one on a distant machine accessed over ssh
Let see Figure 5 the temporal order of action to run a solver and get results:
- (1) Write solver input file(s) using the study data
- (2) Run the solver
- (2.1) The solver read the input file(s)
- (2.2) The solver compute results and write it to solver output file(s)
- (3) Pamhyr2 create a
Results
object - (3.1) The Pamhyr2 solver class read solver output file(s) and complete Results with readed data
Figure 5: Pamhyr2 solver execution pipeline architecture scheme
In case of generic solver (or a solver with input and output formater) the temporal order of action is prensented in Figure 6.
Figure 6: Pamhyr2 generic solver execution pipeline architecture scheme
To implement a Solver in Pamhyr2, there exists a abstract class
Solver.AbstractSolver
. A class who herits this class, must implement
different methods:
export
: Export the study to solver input file(s)input_param
: Return the solver input parameter(s) as stringlog_file
: Return the solver log file name as stringresults
: Read the solver output file(s) and return aModel.Results
object.
2.4 Unit tests
A very small part of Pamhyr2 has unit test. This part is limited to the Model.
python3 -m venv test . test test/bin/activate pip3 install -U -r ./full-requirements.txt cd src/ python3 -Walways -m unittest discovert -v -t .
2.5 The debug mode
To activate an deactivate the Pamhyr2 debug mode you can open the configuration window and type "Ctrl+G" or run Pamhyr2 with command line:
./Pamhyr2 debug
This mode add some log and add two action in main window menu: "About > Debug" open a window with Python Repl in current Python environement, and "About > Debug SQLite" who open the application SQLiteBrowser (if installed) on current Study to explore the study data base file.
Figure 7: Pamhyr2 debug Python REPL
3 Build the project
The project uses gitlab-ci runners to build packages, but it is possible to build packages manually.
3.1 Building packages
If you need an hand made package, you can script available in
packages
directory.
3.1.1 GNU/Linux
On GNU/Linux building GNU/Linux packages is easy, you just need python
in version 3.8 must be installed with venv and pyinstaller packages
(see Listing 9 for Debian and derived system). Finally,
run the linux.sh
script (see Listing 10).
sudo apt install python3.8 python3 -m pip install venv python3 -m pip install pyinstaller
cd packages
./linux.sh
3.1.2 Windows
To make the Windows packages you have two choice: If you use Windows
you can use the script packages/windows.bat
, other else
you can use the script packages/wine.sh
. Each script need
a specific software environment.
On windows, you needs python on version 3.8, pyinstaller and NSIS4 installed. On GNU/Linux you need wget, wine and winetricks installed.
3.2 Setup the CI environment
Pamhyr2 need a Linux ci-runner and a Windows ci-runner for building package. The windows ci-runner could run on a Wine environement.
3.2.1 Linux
The Linux ci-runner need some software and dependencies in addtion of gitlab-ci.
sudo apt install \ emacs emacs-goodies-el \ texlive-full \ python3.8 python3.8-venv sudo python3 -m pip install pyinstaller
3.2.2 Windows (Wine)
The ci-runner environment for Wine need at least wine version 8, let see who to add wine official depot to your linux distribution.
sudo apt install wine-stable winetricks
In addition, the environment need windows version of:
- Python 3.8.10
- Git
- PowerShell
- Gitlab-ci
- Nsis
Now, we can install pyinstaller
on this windows environment:
wine python -m pip install pyinstaller
4 Documentation files
This document and the user documentation are org files. This text file format is formatted so that it can be exported in different formats: PDF (with latex), ODT, HTML, etc. It was originally designed for the GNUEmacs5 text editor, but can be edited with any text editor. Here we take a look at the different features used in these documents.
4.1 Org-mode
4.1.1 Document structure
Org uses the *
character to define a new document section. To add a
sub-section, you can add an additional *
to the current section6.
* Top level headline ** Second level *** Third level some text *** Third level more text * Another top level headline
4.1.2 Format
Org-mode is a markup file, using markup in the text to modify the appearance of a portion of text7.
Markup | Results |
---|---|
*Bolt* |
Bolt |
/Italic/ |
Italic |
_underline_ |
underline |
=verbatim= |
verbatim |
~code~ |
code |
+strike-through+ |
4.1.3 Source code blocks
You can add some code blocks8 in the document.
Here is an example for python source code:
#+CAPTION: Get os type name in Python code #+begin_src python import os print(f"Document build on system: {os.name}") #+end_src
If you use GNUEmacs, it is also possible to run the code inside a block and export (or not) the reuslts in the document.
import os print(f"Document build on system: {os.name}")
Document build on system: posix
4.1.4 LaTeX
If we export the file to PDF, org-mode use \LaTeX. So we can add
some piece of \LaTeX into the document9. For exemple, we can add math formula like
$E=mc^2$
(\(E=mc^2\)) or \[E=mc^2\]
:
\[E=mc^2\]
But we can also add every type of \LaTeX:
# Add latex in line #+LATEX: <my line of latex> # Add multiple line of LaTeX #+BEGIN_EXPORT latex <my latex here> #+END_EXPORT
It is also possible to add specific \LaTeX file header with
#+LATEX_HEADER
. In this document we use the file
doc/tools/latex.org
for all \LaTeX headers.
4.1.5 Macro
In this document, we use a few macros10 to simplify writing. They allow you to define sequences
of text to be replaced, so that the macro name is replaced by its
value. They are defined in the doc/tools/macro.org
file. Once defined, they can be used in the document as follows:
{{{<macro-name>}}}
. You can also have macros with arguments, in this
case: {{{<macro-name>(arg1,...)}}}
. Les macros peuvent aussi
utiliser du code emacs-lisp.
# Exemple of macro définition #+MACRO: toto tata #+MACRO: add \(($1 + $2)\) #+MACRO: emacs-version (eval (nth 2 (split-string (emacs-version))))
Macro apply:
- Marco
{{{toto}}}
: tata - Marco
{{{add(x,y)}}}
: \((x + y)\) - Marco
{{{emacs-version}}}
: 26.3
4.1.6 References
The references use the \LaTeX bibtex tools. The bib file is in
/doc/tools/ref.bib
and use for developers and user
documentation. In document, use {{{cite(<name>)}}}
to cite a paper.
4.2 Export
To export the files, a build.sh
script is available in the org
files directories. On GNU/Linux system you can build the documentation
PDF file with the command ./build.sh
. Texlive package must be
installed, you can install only needed packages or all texlive
packages, for example on Debian (and some derived system) use command
Listing 12.
sudo apt install texlive-full
Some org-mode configuration used in documentations files are define in
/doc/tools/
:
PamhyrDoc.cls
: The \LaTeX document classmacro.org
: Available macrolatex.org
: \LaTeX configutation for documentations filessetup.el
: GNUEmacs configuration to build documentationsref.bib
: Bibtex files for documentations files
5 How to contribute?
Pamhyr2 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License12, either version 3 of the License, or any later version.
5.1 Guidelines
To contribute to Pamhyr2, we expect a minimum of respect between contributors. We therefore ask you to respect the following rules regarding communication and contribution content:
- No gender, racial, religious or social discrimination
- No insults, personal attacks or potentially offensive remarks
- Pamhyr2 is free software, and intended to remain so, so take care with the licensing of libraries and external content you want to add to the project
- Humour or hidden easter eggs are welcome if they respect the previous rules
5.2 Make a contribution
There are several ways to contribute: you can report a bug by creating an issue on the project's gitlab page13, or you can create a merge request on the same page with the changes you have made to the code, translation or documentation.
The Pamhyr2 copyright is owned by INRAE14, but we keep a
record of each contributors. If you made a modification to pamhyr2
software, please add your name at the end of AUTHORS
file
and respect the Listing 13 format. You can update this file
information for following contribution.
<first name> <last name> [(optional) email], <organisation>, <years>
Sylvain COULIBALY, INRAE, 2020 - 2022 Théophile TERRAZ, INRAE, 2022 - 2024 Pierre-Antoine ROUBY, INRAE, 2023 - 2024
5.3 Translate
You can improve or add translation for the project. To contribute to
Pamhyr2 translate, you need to use Qt Linguist15. Open
Qt-linguist and edite the translation (.ts
) file, finally,
commit the new version of file and make a merge request.
If you want add a new language, edit the script
src/lang/create_ts.sh
like Listing 15. Run the script
and open the new file with Qt-linguist, setup target language (Figure
8) and complete translation. Finally, commit the new
file and make a merge request.
... LANG="fr it" ...
Figure 8: Qt linguist lang setup example with italian.
5.4 Code contribution
If you are developper you can improve and/or add features to Pamhyr2. Please, follow the architecture described in section 2 as closely as possible. Keep the code simple, clear and efficient as possible. The master branch is reserved for the project maintainer; you can create a new branch or fork the project before the request.
\bibliography{documentation}
Footnotes:
Qt Model/View documentation: https://doc.qt.io/qt-5/model-view-programming.html (last access 2023-09-15)
The org-mode website: https://orgmode.org/ (last access 2023-09-15)
The SQLite web site: https://www.sqlite.org/index.html (last access 2023-09-20)
The NSIS web site: https://sourceforge.net/projects/nsis/
The GNUEmacs project website: https://gnu.org/s/emacs/ (last access 2023-09-15)
The GPLv3 web page: https://www.gnu.org/licenses/gpl-3.0.en.html
The Pamhyr2 Gitlab project page: https://gitlab.irstea.fr/theophile.terraz/pamhyr
The INRAE web site: https://www.inrae.fr/
The Qt linguist documentation web page: https://doc.qt.io/qt-5/qtlinguist-index.html (last access 2023-09-18)