PAMHYR2

A GRAPHICAL USER INTERFACE FOR 1D
HYDRO-SEDIMENTARY MODELLING OF RIVERS

DEVELOPERS DOCUMENTATION

VERSION: v0.0.7
DOCUMENT LICENCE: GPLvV3

GRS

Free as in Freedom

© INRAE
April 26, 2024

R
INRAZ lz\;;ie(rau'h'cs

Contents

1 In 1

2__Architecturel

[3.2 Setupthe Clenvironment| e 16
BZIT TINUX . . . o o o e e e e e e 16
(3.2.2 Windows (Wine)| e 17

4__Documentation files| 17

4 Org del e e e 17
MI1 _Documentsfructure]. 17
BIZ2Z Formall oo oo e e e e e 17
MI13 Sourcecodeblocks 18
BIA TIEX] - o o oo oo oo e e 18
BTS MAcrol. . . . o o e e e 18
4.1.6 References| e 19

472 Export] e e e 19

bute? 19
1 delinesl e e e 19

B2 Makeacontrbution] e e e A 20

B3 _Translate]. ol 20

5.4 Codecontribution T e 20

Abstract

This document is for the use of developers. It describes the project architecture, the tools available to
assist development and debugging. It also describes the procedures for creating packages and the configura-
tions required to set up the gitlab runners. Finally, this document explains how documentation is written and
modified, and how to contribute to the project by modifying, improving or adding documentation, transla-
tions or code.

1 Introduction

Pamhyr2 is free and open source software (FOSS) graphical user interface (GUI) for 1D hydro-sedimentary
modelling of rivers developed in Python (with version 3.8). It use PyQt at version 5 and matplotlib in version
3.4.1 or later for the user insterface (see /requirements.txt for details). The architecture of project code
follow the Qt Model/View architecture |I| (see details in section . Pamhyr2 packages can be build manually
(see section [3.1), but there are automatically build with the gitlab-ci (see the section [3.2). Documentation files
are written with org—modeﬂ let see section @ Finally, to see the contribution rules, see the section

2 Architecture

Pamhyr2’s architecture is based on Qt Model/View, see Figure[I] It is made up of several different components:
the model (in blue), the graphical components (in red), the actions/delegates (in green), the commands (in
purple), the solvers (in yellow) and the save file (in grey).

The model is a set of python classes and can be exported to a single SQLite3 format backup file. The
view can be made up of various components, generally a Qt window with other view components, such as: a
table, a text box, a button, a plot, and so on. The user can view the data using the view and interact with certain
components. These components are linked to an action (such as a Python function) or to a delegate class. These

'Qt Model/View documentation: https://doc.qt.io/qt-5/model-view-programming.html|(last access 2023-09-
15)
The org-mode website: https://orgmode . org/|(last access 2023-09-15)

https://doc.qt.io/qt-5/model-view-programming.html
https://orgmode.org/

actions or delegate can create a command (based on Qt UndoCommand class), this command must implement
two functions: One to modify the model, one to reverte this modification and reset the model to previous state.
All model modification must be perform by a command to be cancelled. The user can also run a solver and add

some simulation results to model data.

Pamhyr2

i S

Vizualize

! 3 riggere

Save/Load

Save/Load Create

5 Solver

Execute/Results

Pamhyr2 Model/View architecture scheme (inspired by Qt Model/View architecture https://

Figure 1:
doc.gt.io/gt-5/model-view-programming.html)

All the model source code are in the directory src/Model (let see section @ for more details), the View
components, delegate and command are in src/View (see section[2.2). Solvers classes are in src/Solver

(see section[2.3).
The following sub section show examples of main Pamhyr2 internal class for view componants, but this
documentation is not exhaustive, be free to watch existing code for more details and examples. In, addition

https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html

some features are not factorise and must be implemented from scratch (directly with Qt for example).

2.1 Model

The model is a set of Python classes. In Pamhyr2, this classes must respect some constraint. Each model class
must inherits Model.Tools.SQLSubModel abstract class, except the Model . Study class who inherits
Model.Tools.SQLModel (see[2.1.1).

The model entry point is the Study class. It contains infomation about the study: their name, description,
time system, and so on. Their contains a River object too. This river object inherits the network graph and
contains a list of RiverNode and a list of RiverReach (an edge who contains a source node, and destination
node). RiverReach contrains geometry, so, the river network (node and edge) associated with the geometry
forms the basis of the model, and the other components are linked to one of these basic components.

Greometry

Sediment InitialCqnditions ateralContribution

oundaryCondition

I
Network

Stricklers

Figure 2: Pamhyr2 model class dependencies (A -> B means A can contain references to B)

2.1.1 SQL

The model must be export to a database file to create a study save file. This file use SQLiteSEl format and the
extention .pamhyr. So, each model componante must be register into this study file. To create, update, set
and get information into SQLite database we use SQL command. The database use version number and some
modification could be perform to update database. For each model componante, correspond one or more SQL
table to store information. To normalize the interaction with database we made two classes, SQLModel and
SQLSubModel. The Study class use SQLModel because is the top of the model hierachy. The rest of model
class inherits to SQLSubModel.

3The SQLite web site: https://www.sqglite.org/index.html (last access 2023-09-20)

https://www.sqlite.org/index.html

A class who inherits SQLSubModel, must implement some methods:

¢ _sqgl_create: Class method to create the database scheme

* _sqgl_update: Class method to update the database scheme if necessary
e _sqgl_load: Class method to load data from DB

* _sqgl_save: Method to save current object into DB

Class method take in arguments: The class (c1s), a function to execute SQL command into the database
(execute). In addition, the update method take the previous version of database, load method take an optional
arguments data if additional infomation ar needed, and who can contains whatever you want. The method
save take in arguments the current object (self), a function to execute SQL command into the database
(execute), and optional data (data).

The class who inherits SQLSubModel can also define an class attribute _sub_classes to set a formal
class dependencies into database. This attribute is use at database creation to create all table, and at update to
update all the database table. Let see examples of SQLSubModel usage for two classes Foo and Bar with Foo
contains list of Bar (Listing[T|and [2).

Let see the results database scheme for Pamhyr2 at version v0.0.7 in Figure 3]

2.1.2 List class

A abstract class PamhyrModelList is available and provide some of basic methods for object list in Model. This
abstract class implement some classic action in View like: insert new object, delete object, sort, move object
up, move object down, and so on. An variant exists for multiple list with same type of object, each sublist is
called tab, because in View, this kind of list si prensented in different table PamhyrModelListWithTab.

2.1.3 Dict class

A abstract class PamhyrModelDict is-available and provide some of basic methods for object dictionary in
Model. This class is like PamhyrModelList but use a dictionary instead of list.

2.2 _View

Pamhyr2 use Qt as graphical user interface library with the application "Qt designer" for windows or widget
creation (see[2.2.1)) and "Qt linguist" for interface translate (see[2.2.2). In addition, we use matplotlib as ploting
library (see[2.2.6).

Typically, each model componant have an associated window in application to add, delete or edit this
componant. At top level of View directory we found the MainWindow. py file and some sub-directories. A
view sub-directory contains: A Window.py file, a Table.py file with table model definition if nessessary,
one or more Plot . py file with plot class definition, a translate.py file with componant translate, and
possible other files or sub-directories.

2.2.1 Ulfile

We define as possible all Pamhyr2 windows and custom widgets with "Qt designer". This application generate
UI file who describes interface organisation with table, layout, button, etc. This method is faster than hand
made windows and widget creation, and saves us some purely descriptive code. The UI files are saved into
src/View/ui for window, and /src/View/ui/Widgets for custom widget.

2.2.2 Translate

© ® N ;B W N

from Model.Tools.PamhyrDB import SQLSubModel

class Bar (SQLSubModel) :
_id_cnt =0
def _ _init_ (self, id = -1, x = 0, yv = 0):
self. x = x
self._ y =y
if id == -1:
self.id = Bar._id_cnt + 1
else:
self.id = id
Bar._id_cnt max (id, Bar._id_cnt+1)

@classmethod
def _sqgl_create(cls, execute):
execute ("""
CREATE TABLE bar (
id INTEGER NOT NULL PRIMARY KEY,
x INTEGER NOT NULL,
y INTEGER NOT NULL,
foo_id INTEGER NOT NULL,
FOREIGN KEY (foo_id) REFERENCES foo (id),
)y
return True

@classmethod
def _sqgl_update(cls, execute, version):
If version is lesser than 0.0.2, add column to bar table
major, minor, release = version.strip().split(".")
if major == minor == "0":
if int(release) < 2:
execute ("ALTER TABLE bar ADD COLUMN y INTEGER")
return True

@classmethod
def _sqgl_load(cls, execute, data = None):
new = []
table = execute(
f"SELECT id, x, y FROM bar WHERE foo_id = {data['id']}"
)
for row in table:
bar = cls(
id = row[0], x = row[l], yv = row[2],
)
new.append (bar)
return new

def _sqgl_save(self, execute, data = None):
execute ("INSERT INTO bar (id,x,vy,foo_id) VALUES " +
f" ({self.id}, {self._x}, {self._y}, {data['id']})")

Listing 1: Exemple of class Bar inherits SQLSubModel.

O ® N L B W N

class Foo (SQLSubModel) :

_id_cnt =0
_sub_classes = [Bar]
def _ _init_ (self, id = =1, name = ""):
self._name = name
self._bar = []
#
@classmethod
def _sqgl_create(cls, execute):
execute ("""

CREATE TABLE foo (
id INTEGER NOT NULL PRIMARY KEY,
name TEXT NOT NULL,
)
")

return cls._create_submodel (execute)

@classmethod
def _sqgl_update(cls, excute, version):
return cls._update_submodel (execute, version)

@classmethod
def _sqgl_load(cls, execute, data = None):
new = []
table = execute (
"SELECT id, name FROM foo"
)
for row in table:
foo = cls(
id = row[O0],
name = rowl[1l],
)
data = {
"id": rowl[O], # Current Foo ID
}
foo._bar = Bar._sqgl_load(execute, data=data)
new.append (foo)
return new

def _sqgl_save(self, execute, data = None):
execute (£"DELETE FROM foo WHERE id = {self.id}")
execute (f"DELETE FROM bar WHERE foo_id = {self.id}")
Save new data
execute (£f"INSERT INTO bar (id,name) VALUES ({self.id}, {self._name})")
data = {"id": self.id}
for bar in self._bar:
bar._sqgl_save (execute, data=data)

Listing 2: Exemple of class Foo inherits SQLSubModel and contains a list of Bar object (Listing|I).

solver_parameter
e id
ind
name boundary_condition_data
value P id
solver ind
data0
rep_lines datal
P id bc
enabled
name reservoir_data \. boundary_condition
line P id 7 id
solvers ind name
lateral_contribution_data elevation type
info > id surface tab
| key ind reservoir node
|Value data0
datal lateral_contribution
hydraulic_structures_basic_value lc > id
P id name
name type reservoir
type tab A id
value hydraulic_structures_basic edge nhame
bhs > e id begin_kp node
name end_kp
additional files type
e id enabled hydraulic_structures
enabled hs > > id
name name river_node
path enabled P id
text input_kp name
_output’kp river_reach x
input_reach —— v
output_reach z id
name
enable
initial_conditions odel
7~ id node2
ind
name
comment
reach
kp
discharge
height
friction
~ id
ind
begin_kp
end_kp
reach
- - stricklers
begin_strickler|— | - .
end_strickler |——— | L id
geometry_pointXYZ name
> id comment
nd geometry_profileXYZ minor
name ~ id medium
ind
X
name
y reach
z
profile kp
o num
sedimentary_layer
>~ id
name
sedimentary_layer_layer comment
~ id
ind
name
type
height
d50
sigma
critical_constraint
sl

SQLite database scheme at Pamhyr2 version v0.0.7 (generate with https://gitlab.com/

Figure 3:
Screwtapello/sglite-schema—-diagram)

https://gitlab.com/Screwtapello/sqlite-schema-diagram
https://gitlab.com/Screwtapello/sqlite-schema-diagram

© ® N ;R W N =

from PyQt5.QtCore import QCoreApplication
from View.Tools.PamhyrTranslate import PamhyrTranslate
_translate = QCoreApplication.translate

class MyTranslate (PamhyrTranslate):
def _ init_ (self):
super (MyTranslate, self).__init__ ()

Add traduction to global dictionary
self._dict["My"] = _translate("My", "FooBar")
Add an additional translate dictionary
self._sub_dict["table_headers"] = {

"foo": _translate("My", "Foo"),
"bar": _translate("My", "Bar"),
"baz": _translate("My", "Baz"),

Listing 3: Example of PamhyrTranslate class implementation with a global traduction for FooBar and a
additional dictionary table_headers

2.2.3 Window

The abstract class PamhyrWindow and PamhyrDialog are used for most of Pamhyr2 window. These class allow
to create an window for Pamhyr2 GUI and implemente some useful methods. The super class method difine
some generic value from optional parameters, for examples:

* self._study: The study giving in constructor parameters study (typically a Model. Study class
object)

* self._config: The configuration giving in constructor parameters config (typically a Config
class object)

* self._trad: The traductor dictionary giving in constructor parameters t rad (typically aModel . Tools .Pamhy

class object)

Typically we called method setup_ *, the method to initialize some window componants or connections.

2.2.4 Table

An abstract class PamhyrTableModel is available to define a simple QAbstractTableModel shortly. In simple
cases, there are only data and setData methode to implement, but the constructor needs more information
than a classic QAbstractTableModel class.

2.2.5 UndoCommand

All model modification must be done by an QUndoCommand, this command allow to undo and redo an action.
This a Qt class wi can inherit to define custom undo command (see example Listing

All undo command must be push into a QUndoStack (see Listing[8) to perform the action and allow user
undo and redo this action. In PamhyrWindow (and PamhyrDialog) the undo stack is automatically create if the
option "undo" is activate at window creation, this stack is accessible at self._undo_stack.

2.2.6 Plot

To define a new plot you can create a class who inherit to PamhyrPlot. The creator need at leaste five argument:

* A canvas of type MplCanvas

© ® N ;B W N

© ® N9 o v R WN

from View.Tools.PamhyrWindow import PamhyrWindow
from View.My.Translate import MyTranslate
from View.My.Table import MyTableModel

class MyWindow (PamhyrWindow) :
_pamhyr_ui = "MyUIL"
_pamhyr_name = "My window"

def _ _init__ (self, study=None, config=None,
my_data=None,
parent=None) :
self._my_data = my_data

super (MyWindow, self).__init__ (
Window title
title = self._pamhyr_name + " - " + study.name,
Window standard data
study = study, config = config,
trad = MyTranslate(),
parent = parent,
Activate undo/redo and copy/paste shortcut
options = ["undo", "copy"]

Add custom data to hash window computation
self._hash_data.append(self._my_data)

Setup custom window components
self.setup_table()
self.setup_connections ()

def setup_table(self):
Init table(s)...

def setup_connections(self):
Init action connection(s)...

Listing 4: Example of Pamhyr2 window

from View.Tools.PamhyrTable import PamhyrTableModel

class MyTableModel (PamhyrTableModel) :
def data(self, index, role):
Retrun data at INDEX...

@pyatSlot ()
def setData(self, index, value, role=Qt.EditRole):

Set VALUE at INDEX...

Listing 5: Definition of a table model from PamhyrTableModel in afile View/My/Table.py.

10

=T = T R N e © ® N L R W N =

[Y N S

Table model creation (Window.py: setup_table)
table_headers = self._trad.get_dict("table_headers")
self._model = MyTableModel (
table_view = table, # The table view object
table_headers = table_headers, # The table column headers dict
(with traduction)

editable_headers = ["foo", "bar"], # List of editable column name
delegates = {

"bar": self.my_delegate, # Custom delegate for column 'bar'
}I
data = self._my_lst, # The data
undo = self._undo_stack, # The window undo command stack

Listing 6: Using the table model defined in Listing[5]in window funtion setup_table defined Listing 4]

class AddNodeCommand (QUndoCommand) :
def _ _init__ (self, graph, node):
QUndoCommand._ _init_ (self)

self._graph = graph
self. _node = node

def undo(self):
self._graph.remove_node(self._node.name)

def redo(self):
self._graph.insert_node(self._node)

Listing 7: Example of custom UndoCommand, this command allow to add a node to graph in river network

window (method redo), and delete it to graph with undo method

self._undo_stack.push/(

AddNodeCommand (
self._graph,
node

Listing 8: Example of UndoCommand push into an undo stack.

11

=T - T T N O N

A (optional) t rad of type PamhyrTranslate

* A datausedin draw and update to create and update the plot
* A optional toolbar of type PamhyrToolbar

* A parent window

This class must implement two method draw and update, the first method to draw the plot from scratch, the
second to update the plot if data has changed.

from View.Tools.PamhyrPlot import PamhyrPlot

class MyPlot (PamhyrPlot):
def _ _init_ (self, canvas=None, trad=None, toolbar=None
data=None, parent=None):
super (MyPlot, self).__init__ (

canvas=canvas,
trad=trad,
data=data,
toolbar=toolbar,
parent=parent

self.label_x = self._trad["x"]
self.label_y = self._trad["v"]

Optional configuration
self._isometric_axis = False

self._auto_relim_update = True
self._autoscale_update = True

def draw(self):
Draw function code...

def update(self):
Update function code...

def clear(self):
Clear plot values...

2.3 Solver

The Pamhyr2 architecture allow to define multiple solver. A solver is define by a:

* type

* name

* description,

* path

* command line pattern

* (optional) input formater path

* (optional) input formater command line
* (optional) output formater path

* (optional) output formater command line

Let see Figure] the application can implement different solver type, this solver type implement the code
for export study to solver input format, and read the solver output to study results. There exists a generic solver

12

with a generic input and output format, the type could be use to use a solver not implemented in Pamhyr2,
but this solver must can read/write input and output generic format or use external script. There is possible to
define different solver with the same type, for example two differents version of the same solver. Finaly, with
input and output formater is possible to execute a code on distant computer, for example, over ssh.

User personal computer

Pamhyr2

Figure 4: Scheme of multiple solver configured, one Rubarbe solver and two Mage solver with one on local
machine and one on a distant machine accessed over ssh

Let see Figure [5the temporal order of action to run a solver and get results:

* (1) Write solver input file(s) using the study data
¢ (2) Run the solver

(2.1) The solver read the input file(s)

(2.2) The solver compute results and write it to solver output file(s)
(3) Pamhyr2 create a Results object

(3.1) The Pamhyr?2 solver class read solver output file(s) and complete Results with readed data

In case of generic solver (or a solver with input and output formater) the temporal order of action is
prensented in Figure [f]

To implement a Solver in Pamhyr2, there exists a abstract class Solver.AbstractSolver. A class
who herits this class, must implement different methods:

* export: Export the study to solver input file(s)
* input_param: Return the solver input parameter(s) as string

13

Pamhyr?2

- Solver

[/, \

t 1/ [Create (3)
'
I

Execute (2)

Figure 5: Pamhyr2 solver execution pipeline architecture scheme

Pamhyr2

- Generic solver |- _ _
T

N 1 N
' [Create (5)
{ [

.‘Execute (3)
1

Figure 6: Pamhyr2 generic solver execution pipeline architecture scheme

14

* log_file: Return the solver log file name as string
* results: Read the solver output file(s) and return a Model .Results object.

2.4 Unit tests

A very small part of Pamhyr2 has unit test. This part is limited to the Model.

python3 -m venv test
test test/bin/activate
pip3 install -U -r ./full-requirements.txt

cd src/
python3 -Walways -m unittest discovert -v -t

2.5 The debug mode

To activate an deactivate the Pamhyr2 debug mode you can open the configuration window and type "Ctrl+G"
or run Pamhyr2 with command line:

./Pamhyr2 debug

This mode add some log and add two action in main window menu: "About > Debug" open a window
with Python Repl in current Python environement, and "About > Debug SQLite" who open the application
SQLiteBrowser (if installed) on current Study to explore the study data base file.

{ filter(

el) names = list(map(lambda n: (n.id,
N .nam) ga
[(15, 'CMIRam'}), (2@, 'GLam'), (8, 'AIN'), (25, 'Sadne_SA0'), (29, 'Bourbre_BOU'), (28, 'Pierre_Bénite PIB'}]
bc_nodes = list(=
filter(
lambda n: n is not Mone,
map(
lambda bc: bc.node,
self._study.river.boundary_condition.get_tab("liquid")
)
)
)
logger.info(bc nodes) b Eval
names = list(
map (
lambda n: (n.id, n.name),
bc_nodes

)
)
logger.info{names)
names -

Figure 7: Pamhyr2 debug Python REPL

15

3 Build the project

The project uses gitlab-ci runners to build packages, but it is possible to build packages manually.

3.1 Building packages

If you need an hand made package, you can script available in packages directory.

3.1.1 GNU/Linux

On GNU/Linux building GNU/Linux packages is easy, you just need python in version 3.8 must be installed
with venv and pyinstaller packages (see Listing [9) for Debian and derived system). Finally, run the 1inux.sh
script (see Listing[T0).

sudo apt install python3.8
python3 -m pip install venv
python3 -m pip install pyinstaller

Listing 9: Install environment on GNU/Linux

cd packages
./linux.sh

Listing 10: Build GNU/Linux package

3.1.2 Windows

To make the Windows packages you have two choice: If you use Windows you can use the script pack—
ages/windows.bat, other else you can use the script packages/wine. sh. Each script need a specific
software environment.

On windows, you-needs python on version 3.8, pyinstaller and NSIﬂz_f] installed. On GNU/Linux you need
wget, wine and winetricks installed.

3.2 Setup the CI environment

Pamhyr2 need a Linux ci-runner and a Windows ci-runner for building package. The windows ci-runner could
run on a Wine environement.

3.2.1 Linux

The Linux ci-runner need some software and dependencies in addtion of gitlab-ci.

sudo apt install \
emacs emacs—-goodies-el \
texlive-full \

python3.8 python3.8-venv
sudo python3 -m pip install pyinstaller

“The NSIS web site: https://sourceforge.net/projects/nsis/

16

https://sourceforge.net/projects/nsis/

3.2.2 Windows (Wine)

The ci-runner environment for Wine need at least wine version 8, let see who to add wine official depot to your
linux distribution.

sudo apt install wine-stable winetricks

In addition, the environment need windows version of’:

* Python 3.8.10
e Git

¢ PowerShell

e Gitlab-ci

¢ INsis

Now, we can install pyinstaller on this windows environment:

wine python -m pip install pyinstaller

4 Documentation files

This document and the user documentation are org files. This text file format is formatted so that it can be ex-
ported in different formats: PDF (with latex), ODT, HTML, etc. It was originally designed for the GN UEmacﬂ

text editor, but can be edited with any text editor. Here we take a look at the different features used in these
documents.

4.1 Org-mode
4.1.1 Document structure

Org uses the * character to define a new document section. To add a sub-section, you can add an additional
to the current sectionC}

* Top level headline
**x Second level
**x+ Third level
some text
*x+ Third level
more text
* Another top level headline

4.1.2 Format

Org-mode is a markup file, using markup in the text to modify the appearance of a portion of textﬂ

Markup Results
Bolt Bolt
/Italic/ Italic
underline underline
=verbatim= verbatim
~code~ code

+strike—through+ strike-threugh

>The GNUEmacs project website: https://gnu.org/s/emacs/| (last access 2023-09-15)
8See document structure documentation: https: //orgmode.org/org. html#Headlines|(last access 2023-09-15)
’See markup documentation: https://orgmode.org/org.html#Emphasis-and-Monospace)(last access 2023-09-15)

17

https://www.numetopia.fr/comment-installer-wine-sur-ubuntu-ou-linux-mint/
https://www.numetopia.fr/comment-installer-wine-sur-ubuntu-ou-linux-mint/
https://www.python.org/ftp/python/3.8.10/python-3.8.10-amd64.exe
https://freefr.dl.sourceforge.net/project/nsis/NSIS%203/3.08/nsis-3.08-setup.exe
https://gnu.org/s/emacs/
https://orgmode.org/org.html#Headlines
https://orgmode.org/org.html#Emphasis-and-Monospace

4.1.3 Source code blocks

You can add some code blocks@ in the document.
Here is an example for python source code:

#+CAPTION: Get os type name in Python code
#+begin_src python
import os

print (f"Document build on system: {os.name}")
#+end_src

If you use GNUEmacs, it is also possible to run the code inside a block and export (or not) the reuslts in
the document.

import os

print (f"Document build on system: {os.name}")

Listing 11: Get os type name in Python code

Document build on system: posix

414 DIEX

If we export the file to PDF, org-mode use IATEX. So we can add some piece of I&TXinto the documentﬂ For
exemple, we can add math formula like $E=mc”2$ (F = mc?) or \ [E=mc*2\]:

E=mc?

But we can also add every type of I&IEX:

Add latex in line
#+LATEX: <my line of latex>

Add multiple line of LaTeX
#+BEGIN_EXPORT latex

<my latex here>

#+END_EXPORT

It is also possible to add specific I&TgXfile header with #+LATEX_HEADER. In this document we use the
file doc/tools/latex.org for all I&TgXheaders.

4.1.5 Macro

In this document, we use a few macroﬂ to simplify writing. They allow you to define sequences of text to be
replaced, so that the macro name is replaced by its value. They are defined in the doc/tools/macro.org
file. Once defined, they can be used in the document as follows: { { { <macro—-name>}}}. You can also have
macros with arguments, in this case: {{{<macro-name> (argl,...)}}}. Les macros peuvent aussi
utiliser du code emacs-lisp.

8See org-mode documentation for source code: |https://orgmode.org/org.html#Working-with-Source-Code
(last access 2023-09-15)

?See I8TEXpart in documentation: https: //orgmode .org/org.html#Embedded-LaTeX (last access 2023-09-15)

10See marcos documentation https://orgmode.org/org.html#Macro-Replacement|(last access 2023-09-15)

18

https://orgmode.org/org.html#Working-with-Source-Code
https://orgmode.org/org.html#Embedded-LaTeX
https://orgmode.org/org.html#Macro-Replacement

Exemple of macro définition

#+MACRO: toto tata

#+MACRO: add N (81 + $2)\)

#+MACRO: emacs-version (eval (nth 2 (split-string (emacs-version))))
Macro apply:

e Marco { { {toto}}}: tata
e Marco {{{add (x,y) }}}: (x+y)
e Marco { { {emacs—version}}}: 26.3

4.1.6 References

The references use the I&IgXbibtex tools. The bib file is in /doc/tools/ref.bib and use for developers
and user documentation. In document, use { { {cite (<name>) } }} to cite a paper.

4.2 Export

To export the files, abuild. sh script is available in the org files directories. On GNU/Linux system you can
build the documentation PDF file with the command . /build. sh. Texlive package must be installed, you
can install only needed packages or all texlive packages, for example on Debian (and some derived system) use
command Listing [I2]

sudo apt install texlive-full

Listing 12: Installation command for texlive full on Debian system

Some org-mode configuration used in documentations files are define in /doc/tools/:

* PamhyrDoc. ¢ls: The I&TgXdocument class

e.macro.orqg: Available macro

* latex.org: I&EXconfigutation for documentations files

* setup.el: GNUEmacs configuration to build documentations
* ref.bib: Bibtex files for documentations files

5 How to contribute?

Pamhyr?2 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License{ﬂ either version 3 of the License, or any later version.

5.1 Guidelines

To contribute to Pamhyr2, we expect a minimum of respect between contributors. We therefore ask you to
respect the following rules regarding communication and contribution content:

* No gender, racial, religious or social discrimination

* No insults, personal attacks or potentially offensive remarks

* Pamhyr2 is free software, and intended to remain so, so take care with the licensing of libraries and
external content you want to add to the project

* Humour or hidden easter eggs are welcome if they respect the previous rules

11TheGPLV3webpage:https://www.gnu.org/licenses/gpl—3.O.en.html

19

https://www.gnu.org/licenses/gpl-3.0.en.html

5.2 Make a contribution

There are several ways to contribute: you can report a bug by creating an issue on the project’s gitlab page{izl,
or you can create a merge request on the same page with the changes you have made to the code, translation or
documentation.

The Pamhyr2 copyright is owned by INRAEE-L but we keep a record of each contributors. If you made a
modification to pamhyr2 software, please add your name at the end of AUTHORS file and respect the Listing[13]
format. You can update this file information for following contribution.

<first name> <last name> [(optional) email], <organisation>, <years>

Listing 13: AUTHORS file format

Sylvain COULIBALY, INRAE, 2020 - 2022
Théophile TERRAZ, INRAE, 2022 - 2024
Pierre-Antoine ROUBY, INRAE, 2023 - 2024

Listing 14: Current AUTHORS file

5.3 Translate

You can improve or add translation for the project. To contribute to Pamhyr2 translate, you need to use Qt
Linguis Open Qt-linguist and edite the translation (. ts) file, finally, commit the new version of file and
make a merge request.

If you want add a new language, edit the script src/lang/create_ts. sh like Listing Run the
script and open the new file with Qt-linguist, setup target language (Figure[§) and complete translation. Finally,
commit the new file and make a merge request.

LANG="fr it"

Listing 15: Example of modified src/lang/create_ts. sh to add italian (it) translate for Pamhyr2

5.4 Code contribution

If you are developper you can improve and/or add features to Pamhyr2. Please, follow the architecture described
in section [2] as closely as possible. Keep the code simple, clear and efficient as possible. The master branch is
reserved for the project maintainer; you can create a new branch or fork the project before the request.

References

"2The Pamhyr2 Gitlab project page: |https://gitlab.irstea.fr/theophile.terraz/pamhyr
BThe INRAE web site: https://www.inrae.fr/

4The Qt linguist documentation web page: https://doc.qt.io/qt-5/qtlinguist—index.html|(last access 2023-09-
18)

20

https://gitlab.irstea.fr/theophile.terraz/pamhyr
https://www.inrae.fr/
https://doc.qt.io/qt-5/qtlinguist-index.html

Sektings For'it" - Qt Linguiskt

Source language

English

Any Country

Italian (italiano)

alia)

Cancel

Figure 8: Qt linguist lang setup example with italian.

21

	Introduction
	Architecture
	Model
	SQL
	List class
	Dict class

	View
	UI file
	Translate
	Window
	Table
	UndoCommand
	Plot

	Solver
	Unit tests
	The debug mode

	Build the project
	Building packages
	GNU/Linux
	Windows

	Setup the CI environment
	Linux
	Windows (Wine)

	Documentation files
	Org-mode
	Document structure
	Format
	Source code blocks
	LaTeX
	Macro
	References

	Export

	How to contribute?
	Guidelines
	Make a contribution
	Translate
	Code contribution

