diff --git a/README.md b/README.md index c48fc1a65a182e3cd676b2cc24a39622ed49c183..e5a1d523f20e8d2a00f03292e8543261a409b27b 100644 --- a/README.md +++ b/README.md @@ -14,17 +14,18 @@ Some pre-trained models are available at this [url](https://nextcloud.inrae.fr/s The easiest way to run a model is to run the timeseries processor such as: -<pre><code>python production/meraner_timeseries_processor.py -<span style="padding:0 0 0 90px;color:blue">--s2_dir</span> S2_PREPARE/T31TCJ -<span style="padding:0 0 0 90px;color:blue">--s1_dir</span> S1_PREPARE/T31TCJ -<span style="padding:0 0 0 90px;color:blue">--model</span> merunet_occitanie_pretrained/ -<span style="padding:0 0 0 90px;color:blue">--dem</span> DEM_PREPARE/T31TCJ.tif -<span style="padding:0 0 0 90px;color:blue">--out_dir</span> meraner_timeseries/ -<span style="padding:0 0 0 90px;color:grey">--write_intermediate --overwrite</span> -<span style="padding:0 0 0 90px;color:grey">--start</span> 2018-01-01 <span style="color:grey">--end</span> 2018-12-31 -<span style="padding:0 0 0 90px;color:grey">--ulx</span> 306000 <span style="color:grey">--uly</span> 4895000 <span style="color:grey">--lrx</span> 320000 <span style="color:grey">--lry</span> 4888000 -</code></pre> -*(mandatory arguments in blue, optional arguments in grey)* +``` +python production/meraner_timeseries_processor.py + --s2_dir S2_PREPARE/T31TCJ + --s1_dir S1_PREPARE/T31TCJ + --model merunet_occitanie_pretrained/ + --dem DEM_PREPARE/T31TCJ.tif + --out_dir meraner_timeseries/ +# Optional arguments: + --write_intermediate --overwrite + --start 2018-01-01 --end 2018-12-31 + --ulx 306000 --uly 4895000 --lrx 320000 --lry 4888000 +``` You can find more info on available models and how to use these models [here](doc/pretrained_models.md) diff --git a/doc/pretrained_models.md b/doc/pretrained_models.md index e1db7d50fc71ee6097e64d90d785d7e37e6cde72..33a295773c30a39e5ba140e4c7797ee1adf13fd6 100644 --- a/doc/pretrained_models.md +++ b/doc/pretrained_models.md @@ -34,18 +34,18 @@ All models use Sentinel-2 and Sentinel-1 images as inputs. The inputs/output of ## Time series processor This is the highest-level way of running the inference of a model. For example, you can run a CRGA model on a time series like this: -<pre><code>python production/crga_timeseries_processor.py \ -<span style="padding:0 0 0 90px;color:blue">--s2_dir</span> S2_PREPARE/T31TCJ \ -<span style="padding:0 0 0 90px;color:blue">--s1_dir</span> S1_PREPARE/T31TCJ \ -<span style="padding:0 0 0 90px;color:blue">--model</span> crga_os2_occitanie_pretrained/ \ -<span style="padding:0 0 0 90px;color:blue">--dem</span> DEM_PREPARE/T31TCJ.tif \ -<span style="padding:0 0 0 90px;color:blue">--out_dir</span> reconstructed_timeseries/ \ -<span style="padding:0 0 0 90px;color:grey">--write_intermediate --overwrite</span> \ -<span style="padding:0 0 0 90px;color:grey">--start</span> 2018-01-01 <span style="color:grey">--end</span> 2018-12-31 \ -<span style="padding:0 0 0 90px;color:grey">--ulx</span> 306000 <span style="color:grey">--uly</span> 4895000 <span style="color:grey">--lrx</span> 320000 <span style="color:grey">--lry</span> 4888000 -</code></pre> -*(mandatory arguments in blue, optional arguments in grey)* - +``` +python production/crga_timeseries_processor.py + --s2_dir S2_PREPARE/T31TCJ + --s1_dir S1_PREPARE/T31TCJ + --model crga_os2_occitanie_pretrained/ + --dem DEM_PREPARE/T31TCJ.tif + --out_dir reconstructed_timeseries/ +# Optional arguments: + --write_intermediate --overwrite + --start 2018-01-01 --end 2018-12-31 + --ulx 306000 --uly 4895000 --lrx 320000 --lry 4888000 +``` ## Processor For instance, we use `crga_processor.py` to perform the inference of the *crga* models.