#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Copyright (c) 2020-2022 INRAE Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ Analyze the S1 and S2 orbits """ import argparse import numpy as np import logging from decloud.core import system from decloud.core.tile_io import TilesLoader from decloud.preprocessing import constants import pyotb system.basic_logging_init() parser = argparse.ArgumentParser(description="S1/S2 orbits analysis. The program writes the closest gap between " "the S1 and S2 images for each patches, in the form of an histogram " "stored in the channel of the output geotiff image (each pixel " "corresponds to a patch).") parser.add_argument("--tiles", required=True, help="Path to tile handler file (.json)") parser.add_argument("--out_dir", required=True) parser.add_argument("--patchsize", type=int, default=256) parser.add_argument("--nbins", type=int, default=8, help="Number of bins in histogram") parser.add_argument("--quant", type=int, default=12, help="Histogram bins quantization (hours)") params = parser.parse_args() # Tiles handlers th = TilesLoader(params.tiles, patchsize_10m=params.patchsize) # Histogram bins max_n_bins = params.nbins bins_quant = params.quant exp = "{" + (max_n_bins * "0;")[:-1] + "}" # equals "{0;...;0}" # Compute for tile_name, tile_handler in th.items(): logging.info("Processing tile %s", tile_name) # Fill this raster with zeros zeros_raster = pyotb.BandMathX(il=tile_handler.s2_images[0].clouds_stats_fn, exp=exp) scale = constants.PATCHSIZE_REF / params.patchsize initialized_raster = pyotb.RigidTransformResample({"in": zeros_raster, "interpolator": "nn", "transform.type.id.scalex": scale, "transform.type.id.scaley": scale}) # Histogram of S1/S2 temporal gap histo_array = np.zeros(shape=initialized_raster.shape) def _count_gaps(pos): for s2_idx, _ in enumerate(tile_handler.s2_images): closest_s1 = tile_handler.closest_s1[pos] if s2_idx in closest_s1: gap = closest_s1[s2_idx].distance bin = min(max_n_bins - 1, int(gap / (bins_quant * 3600))) histo_array[pos[1]][pos[0]][bin] += 1 tile_handler.for_each_pos(_count_gaps) # Export with pyotb out = np.add(initialized_raster, histo_array) # this is a pyotb object out_fn = system.pathify(params.out_dir) + "{}_s1s2gap_hist.tif".format(tile_name) out.write(out_fn)