#!/usr/bin/python3 # -*- coding: utf-8 -*- """ Copyright (c) 2020-2022 INRAE Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ Compute cloud coverage and pixel validity from an input set of tiles """ import os import argparse import logging import numpy as np from decloud.core import system, tile_io, raster # Application parameters parser = argparse.ArgumentParser(description="Compute cloud coverage and pixel validity from an input set of tiles") parser.add_argument("--tiles", required=True, help="Tiles (.json file)") parser.add_argument("--out_dir", required=True, help="Output directory for generated stats") params = parser.parse_args() # Logging init system.basic_logging_init() def compute_stats(tile_name, tile_handler): """ Compute statistics. :param tile_name: Name of the tile to process :param tile_handler: Tile handler instance """ ref_fn = tile_handler.s2_images[0].clouds_stats_fn out_prefix = os.path.join(params.out_dir, tile_name) # Statistics cloud_cov = np.sum(np.multiply(tile_handler.s2_images_validity, tile_handler.s2_images_cloud_coverage), axis=0) cloud_cov = np.divide(cloud_cov, np.sum(tile_handler.s2_images_validity, axis=0)) nb_pix_s1 = np.sum(tile_handler.s1_images_validity, axis=0) nb_pix_s2 = np.sum(tile_handler.s2_images_validity, axis=0) # Save raster.save_numpy_array_as_raster(ref_fn=ref_fn, np_arr=cloud_cov, out_fn=out_prefix + "_cloud_cov.tif") raster.save_numpy_array_as_raster(ref_fn=ref_fn, np_arr=nb_pix_s1, out_fn=out_prefix + "_nb_pix_s1.tif") raster.save_numpy_array_as_raster(ref_fn=ref_fn, np_arr=nb_pix_s2, out_fn=out_prefix + "_nb_pix_s2.tif") if __name__ == "__main__": tiles = tile_io.TilesLoader(params.tiles, patchsize_10m=64) # Compute stats for each tile for name, th in tiles.items(): logging.info("Computing stats for tile %s", name) compute_stats(tile_name=name, tile_handler=th)