Newer
Older
\title{Computation of daily series of potential evapotranspiration with Oudin's formula}
PEdaily_Oudin(JD, Temp, LatRad, Lat, LatUnit)
\item{JD}{[numeric] time series of Julian day of the year [-]; see details below}
\item{Temp}{[numeric] time series of daily mean air temperature [°C]}
\item{LatRad}{(deprecated)[numeric] latitude of measurement for the temperature series [rad]. Please use \code{Lat} instead}
\item{Lat}{[numeric] latitude of measurement for the temperature series [radian or degrees]}
\item{LatUnit}{[character] latitude unit (default = \code{"rad"} or \code{"deg"})}
\value{
[numeric] time series of daily potential evapotranspiration [mm/d]
}
\description{
Function which computes daily PE using the formula from Oudin et al. (2005).
}
\details{
In the \code{JD} argument, the Julian day of the year of the 1st of January is equal to 1 and the 31st of December to 365 (366 in leap years)). If the Julian day of the year is computed on an object of the \code{POSIXlt} class, the user has to add 1 to the returned value (e.g. \code{as.POSIXlt("2016-12-31")$yday + 1}).
}
PotEvap <- PEdaily_Oudin(JD = as.POSIXlt(BasinObs$DatesR)$yday + 1,
Temp = BasinObs$T,
Laurent Coron, Ludovic Oudin, Olivier Delaigue, Guillaume Thirel
Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil and C. Loumagne (2005).
Which potential evapotranspiration input for a lumped rainfall-runoff model?:
Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling.
Journal of Hydrology, 303(1-4), 290-306. doi:10.1016/j.jhydrol.2004.08.026.