Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#*****************************************************************************************************************
#' Function which extrapolates the precipitation and air temperature series for different elevation layers (method from Valery, 2010).
#'
#' Elevation layers of equal surface are created the 101 elevation quantiles (\emph{HypsoData})
#' and the number requested elevation layers (\emph{NLayers}). \cr
#' Forcing data (precipitation and air temperature) are extrapolated using gradients from Valery (2010).
#' (e.g. gradP=0.0004 [m-1] for France and gradT=0.434 [degreC/100m] for January, 1st). \cr
#' This function is used by the \emph{CreateInputsModel} function. \cr
#*****************************************************************************************************************
#' @title Altitudinal extrapolation of precipitation and temperature series
#' @author Laurent Coron, Pierre Brigode (June 2014)
#' @references
#' Turcotte, R., L.-G. Fortin, V. Fortin, J.-P. Fortin and J.-P. Villeneuve (2007),
#' Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent
#' in southern Quebec, Canada, Nordic Hydrology, 38(3), 211, doi:10.2166/nh.2007.009. \cr
#' Valéry, A. (2010), Modélisation précipitations-débit sous influence nivale ? : Elaboration d'un module neige
#' et évaluation sur 380 bassins versants, PhD thesis (in french), AgroParisTech, Paris, France. \cr
#' USACE (1956), Snow Hydrology, pp. 437, U.S. Army Coprs of Engineers (USACE) North Pacific Division, Portland, Oregon, USA.
#' @seealso \code{\link{CreateInputsModel}}, \code{\link{RunModel_CemaNeigeGR4J}}
#' @encoding UTF-8
#' @export
#_FunctionInputs__________________________________________________________________________________________________
#' @param DatesR [POSIXlt] vector of dates
#' @param Precip [numeric] time series of daily total precipitation (catchment average) [mm]
#' @param TempMean [numeric] time series of daily mean air temperature [degC]
#' @param TempMin (optional) [numeric] time series of daily min air temperature [degC]
#' @param TempMax (optional) [numeric] time series of daily max air temperature [degC]
#' @param ZInputs [numeric] real giving the mean elevation of the Precip and Temp series (before extrapolation) [m]
#' @param HypsoData [numeric] vector of 101 reals: min, q01 to q99 and max of catchment elevation distribution [m]
#' @param NLayers [numeric] integer giving the number of elevation layers requested [-]
#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE
#_FunctionOutputs_________________________________________________________________________________________________
#' @return list containing the extrapolated series of precip. and air temp. on each elevation layer
#' \tabular{ll}{
#' \emph{$LayerPrecip } \tab [list] list of time series of daily precipitation (layer average) [mm] \cr
#' \emph{$LayerTempMean } \tab [list] list of time series of daily mean air temperature (layer average) [degC] \cr
#' \emph{$LayerTempMin } \tab [list] list of time series of daily min air temperature (layer average) [degC] \cr
#' \emph{$LayerTempMax } \tab [list] list of time series of daily max air temperature (layer average) [degC] \cr
#' \emph{$LayerFracSolidPrecip} \tab [list] list of time series of daily solid precip. fract. (layer average) [-] \cr
#' \emph{$ZLayers } \tab [numeric] vector of median elevation for each layer \cr
#' }
#*****************************************************************************************************************
DataAltiExtrapolation_Valery <- function(DatesR,Precip,TempMean,TempMin=NULL,TempMax=NULL,ZInputs,HypsoData,NLayers,quiet=FALSE){
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
##Altitudinal_gradient_functions_______________________________________________________________
##unique_gradient_for_precipitation
GradP_Valery2010 <- function(){
return(0.00041); ### value from Val? PhD thesis page 126
}
##daily_gradients_for_mean_min_and_max_air_temperature
GradT_Valery2010 <- function(){
RESULT <- matrix(c(
1, 1, 0.434, 0.366, 0.498,
2, 1, 0.434, 0.366, 0.500,
3, 1, 0.435, 0.367, 0.501,
4, 1, 0.436, 0.367, 0.503,
5, 1, 0.437, 0.367, 0.504,
6, 1, 0.439, 0.367, 0.506,
7, 1, 0.440, 0.367, 0.508,
8, 1, 0.441, 0.368, 0.510,
9, 1, 0.442, 0.368, 0.512,
10, 1, 0.444, 0.368, 0.514,
11, 1, 0.445, 0.368, 0.517,
12, 1, 0.446, 0.368, 0.519,
13, 1, 0.448, 0.369, 0.522,
14, 1, 0.450, 0.369, 0.525,
15, 1, 0.451, 0.369, 0.527,
16, 1, 0.453, 0.370, 0.530,
17, 1, 0.455, 0.370, 0.533,
18, 1, 0.456, 0.370, 0.537,
19, 1, 0.458, 0.371, 0.540,
20, 1, 0.460, 0.371, 0.543,
21, 1, 0.462, 0.371, 0.547,
22, 1, 0.464, 0.372, 0.550,
23, 1, 0.466, 0.372, 0.554,
24, 1, 0.468, 0.373, 0.558,
25, 1, 0.470, 0.373, 0.561,
26, 1, 0.472, 0.374, 0.565,
27, 1, 0.474, 0.374, 0.569,
28, 1, 0.476, 0.375, 0.573,
29, 1, 0.478, 0.375, 0.577,
30, 1, 0.480, 0.376, 0.582,
31, 1, 0.483, 0.376, 0.586,
1, 2, 0.485, 0.377, 0.590,
2, 2, 0.487, 0.377, 0.594,
3, 2, 0.489, 0.378, 0.599,
4, 2, 0.492, 0.379, 0.603,
5, 2, 0.494, 0.379, 0.607,
6, 2, 0.496, 0.380, 0.612,
7, 2, 0.498, 0.381, 0.616,
8, 2, 0.501, 0.381, 0.621,
9, 2, 0.503, 0.382, 0.625,
10, 2, 0.505, 0.383, 0.630,
11, 2, 0.508, 0.384, 0.634,
12, 2, 0.510, 0.384, 0.639,
13, 2, 0.512, 0.385, 0.643,
14, 2, 0.515, 0.386, 0.648,
15, 2, 0.517, 0.387, 0.652,
16, 2, 0.519, 0.387, 0.657,
17, 2, 0.522, 0.388, 0.661,
18, 2, 0.524, 0.389, 0.666,
19, 2, 0.526, 0.390, 0.670,
20, 2, 0.528, 0.391, 0.674,
21, 2, 0.530, 0.392, 0.679,
22, 2, 0.533, 0.393, 0.683,
23, 2, 0.535, 0.393, 0.687,
24, 2, 0.537, 0.394, 0.691,
25, 2, 0.539, 0.395, 0.695,
26, 2, 0.541, 0.396, 0.699,
27, 2, 0.543, 0.397, 0.703,
28, 2, 0.545, 0.398, 0.707,
29, 2, 0.546, 0.399, 0.709,
1, 3, 0.547, 0.399, 0.711,
2, 3, 0.549, 0.400, 0.715,
3, 3, 0.551, 0.401, 0.718,
4, 3, 0.553, 0.402, 0.722,
5, 3, 0.555, 0.403, 0.726,
6, 3, 0.557, 0.404, 0.729,
7, 3, 0.559, 0.405, 0.732,
8, 3, 0.560, 0.406, 0.736,
9, 3, 0.562, 0.406, 0.739,
10, 3, 0.564, 0.407, 0.742,
11, 3, 0.566, 0.408, 0.745,
12, 3, 0.567, 0.409, 0.748,
13, 3, 0.569, 0.410, 0.750,
14, 3, 0.570, 0.411, 0.753,
15, 3, 0.572, 0.412, 0.756,
16, 3, 0.573, 0.413, 0.758,
17, 3, 0.575, 0.414, 0.761,
18, 3, 0.576, 0.415, 0.763,
19, 3, 0.577, 0.416, 0.765,
20, 3, 0.579, 0.417, 0.767,
21, 3, 0.580, 0.417, 0.769,
22, 3, 0.581, 0.418, 0.771,
23, 3, 0.582, 0.419, 0.773,
24, 3, 0.583, 0.420, 0.774,
25, 3, 0.584, 0.421, 0.776,
26, 3, 0.585, 0.422, 0.777,
27, 3, 0.586, 0.422, 0.779,
28, 3, 0.587, 0.423, 0.780,
29, 3, 0.588, 0.424, 0.781,
30, 3, 0.589, 0.425, 0.782,
31, 3, 0.590, 0.425, 0.783,
1, 4, 0.591, 0.426, 0.784,
2, 4, 0.591, 0.427, 0.785,
3, 4, 0.592, 0.427, 0.785,
4, 4, 0.593, 0.428, 0.786,
5, 4, 0.593, 0.429, 0.787,
6, 4, 0.594, 0.429, 0.787,
7, 4, 0.595, 0.430, 0.787,
8, 4, 0.595, 0.431, 0.788,
9, 4, 0.596, 0.431, 0.788,
10, 4, 0.596, 0.432, 0.788,
11, 4, 0.597, 0.432, 0.788,
12, 4, 0.597, 0.433, 0.788,
13, 4, 0.597, 0.433, 0.788,
14, 4, 0.598, 0.434, 0.788,
15, 4, 0.598, 0.434, 0.788,
16, 4, 0.598, 0.435, 0.787,
17, 4, 0.599, 0.435, 0.787,
18, 4, 0.599, 0.436, 0.787,
19, 4, 0.599, 0.436, 0.786,
20, 4, 0.599, 0.436, 0.786,
21, 4, 0.600, 0.437, 0.785,
22, 4, 0.600, 0.437, 0.785,
23, 4, 0.600, 0.437, 0.784,
24, 4, 0.600, 0.438, 0.784,
25, 4, 0.600, 0.438, 0.783,
26, 4, 0.601, 0.438, 0.783,
27, 4, 0.601, 0.438, 0.782,
28, 4, 0.601, 0.439, 0.781,
29, 4, 0.601, 0.439, 0.781,
30, 4, 0.601, 0.439, 0.780,
1, 5, 0.601, 0.439, 0.779,
2, 5, 0.601, 0.439, 0.778,
3, 5, 0.601, 0.439, 0.778,
4, 5, 0.601, 0.440, 0.777,
5, 5, 0.601, 0.440, 0.776,
6, 5, 0.601, 0.440, 0.775,
7, 5, 0.601, 0.440, 0.775,
8, 5, 0.601, 0.440, 0.774,
9, 5, 0.601, 0.440, 0.773,
10, 5, 0.602, 0.440, 0.772,
11, 5, 0.602, 0.440, 0.772,
12, 5, 0.602, 0.440, 0.771,
13, 5, 0.602, 0.440, 0.770,
14, 5, 0.602, 0.440, 0.770,
15, 5, 0.602, 0.440, 0.769,
16, 5, 0.602, 0.440, 0.768,
17, 5, 0.602, 0.440, 0.768,
18, 5, 0.602, 0.440, 0.767,
19, 5, 0.602, 0.440, 0.767,
20, 5, 0.602, 0.440, 0.766,
21, 5, 0.602, 0.440, 0.766,
22, 5, 0.602, 0.440, 0.765,
23, 5, 0.602, 0.440, 0.765,
24, 5, 0.602, 0.440, 0.764,
25, 5, 0.602, 0.440, 0.764,
26, 5, 0.602, 0.440, 0.764,
27, 5, 0.602, 0.439, 0.763,
28, 5, 0.602, 0.439, 0.763,
29, 5, 0.602, 0.439, 0.763,
30, 5, 0.602, 0.439, 0.762,
31, 5, 0.602, 0.439, 0.762,
1, 6, 0.602, 0.439, 0.762,
2, 6, 0.602, 0.439, 0.762,
3, 6, 0.602, 0.439, 0.762,
4, 6, 0.602, 0.439, 0.762,
5, 6, 0.602, 0.439, 0.762,
6, 6, 0.602, 0.438, 0.761,
7, 6, 0.602, 0.438, 0.761,
8, 6, 0.602, 0.438, 0.761,
9, 6, 0.602, 0.438, 0.761,
10, 6, 0.602, 0.438, 0.761,
11, 6, 0.602, 0.438, 0.762,
12, 6, 0.602, 0.438, 0.762,
13, 6, 0.602, 0.438, 0.762,
14, 6, 0.602, 0.438, 0.762,
15, 6, 0.602, 0.437, 0.762,
16, 6, 0.602, 0.437, 0.762,
17, 6, 0.602, 0.437, 0.762,
18, 6, 0.602, 0.437, 0.762,
19, 6, 0.602, 0.437, 0.763,
20, 6, 0.602, 0.437, 0.763,
21, 6, 0.602, 0.437, 0.763,
22, 6, 0.602, 0.436, 0.763,
23, 6, 0.602, 0.436, 0.763,
24, 6, 0.602, 0.436, 0.764,
25, 6, 0.602, 0.436, 0.764,
26, 6, 0.601, 0.436, 0.764,
27, 6, 0.601, 0.436, 0.764,
28, 6, 0.601, 0.436, 0.764,
29, 6, 0.601, 0.435, 0.765,
30, 6, 0.601, 0.435, 0.765,
1, 7, 0.601, 0.435, 0.765,
2, 7, 0.600, 0.435, 0.765,
3, 7, 0.600, 0.435, 0.765,
4, 7, 0.600, 0.434, 0.766,
5, 7, 0.600, 0.434, 0.766,
6, 7, 0.599, 0.434, 0.766,
7, 7, 0.599, 0.434, 0.766,
8, 7, 0.599, 0.434, 0.766,
9, 7, 0.598, 0.433, 0.766,
10, 7, 0.598, 0.433, 0.766,
11, 7, 0.598, 0.433, 0.766,
12, 7, 0.597, 0.433, 0.766,
13, 7, 0.597, 0.432, 0.767,
14, 7, 0.597, 0.432, 0.767,
15, 7, 0.596, 0.432, 0.767,
16, 7, 0.596, 0.432, 0.766,
17, 7, 0.595, 0.431, 0.766,
18, 7, 0.595, 0.431, 0.766,
19, 7, 0.594, 0.431, 0.766,
20, 7, 0.594, 0.430, 0.766,
21, 7, 0.593, 0.430, 0.766,
22, 7, 0.593, 0.430, 0.766,
23, 7, 0.592, 0.429, 0.765,
24, 7, 0.592, 0.429, 0.765,
25, 7, 0.591, 0.428, 0.765,
26, 7, 0.590, 0.428, 0.765,
27, 7, 0.590, 0.428, 0.764,
28, 7, 0.589, 0.427, 0.764,
29, 7, 0.588, 0.427, 0.764,
30, 7, 0.588, 0.426, 0.763,
31, 7, 0.587, 0.426, 0.763,
1, 8, 0.586, 0.425, 0.762,
2, 8, 0.586, 0.425, 0.762,
3, 8, 0.585, 0.424, 0.761,
4, 8, 0.584, 0.424, 0.761,
5, 8, 0.583, 0.423, 0.760,
6, 8, 0.583, 0.423, 0.760,
7, 8, 0.582, 0.422, 0.759,
8, 8, 0.581, 0.421, 0.758,
9, 8, 0.580, 0.421, 0.758,
10, 8, 0.579, 0.420, 0.757,
11, 8, 0.578, 0.420, 0.756,
12, 8, 0.578, 0.419, 0.755,
13, 8, 0.577, 0.418, 0.754,
14, 8, 0.576, 0.418, 0.754,
15, 8, 0.575, 0.417, 0.753,
16, 8, 0.574, 0.416, 0.752,
17, 8, 0.573, 0.415, 0.751,
18, 8, 0.572, 0.415, 0.750,
19, 8, 0.571, 0.414, 0.749,
20, 8, 0.570, 0.413, 0.748,
21, 8, 0.569, 0.413, 0.747,
22, 8, 0.569, 0.412, 0.746,
23, 8, 0.568, 0.411, 0.745,
24, 8, 0.567, 0.410, 0.744,
25, 8, 0.566, 0.409, 0.743,
26, 8, 0.565, 0.409, 0.742,
27, 8, 0.564, 0.408, 0.741,
28, 8, 0.563, 0.407, 0.740,
29, 8, 0.562, 0.406, 0.738,
30, 8, 0.561, 0.405, 0.737,
31, 8, 0.560, 0.405, 0.736,
1, 9, 0.558, 0.404, 0.735,
2, 9, 0.557, 0.403, 0.734,
3, 9, 0.556, 0.402, 0.732,
4, 9, 0.555, 0.401, 0.731,
5, 9, 0.554, 0.401, 0.730,
6, 9, 0.553, 0.400, 0.728,
7, 9, 0.552, 0.399, 0.727,
8, 9, 0.551, 0.398, 0.725,
9, 9, 0.550, 0.397, 0.724,
10, 9, 0.549, 0.396, 0.723,
11, 9, 0.548, 0.396, 0.721,
12, 9, 0.546, 0.395, 0.720,
13, 9, 0.545, 0.394, 0.718,
14, 9, 0.544, 0.393, 0.717,
15, 9, 0.543, 0.392, 0.715,
16, 9, 0.542, 0.391, 0.713,
17, 9, 0.541, 0.391, 0.712,
18, 9, 0.540, 0.390, 0.710,
19, 9, 0.538, 0.389, 0.709,
20, 9, 0.537, 0.388, 0.707,
21, 9, 0.536, 0.388, 0.705,
22, 9, 0.535, 0.387, 0.703,
23, 9, 0.533, 0.386, 0.702,
24, 9, 0.532, 0.385, 0.700,
25, 9, 0.531, 0.385, 0.698,
26, 9, 0.530, 0.384, 0.696,
27, 9, 0.528, 0.383, 0.694,
28, 9, 0.527, 0.383, 0.692,
29, 9, 0.526, 0.382, 0.690,
30, 9, 0.525, 0.381, 0.688,
1, 10, 0.523, 0.381, 0.686,
2, 10, 0.522, 0.380, 0.684,
3, 10, 0.521, 0.379, 0.682,
4, 10, 0.519, 0.379, 0.680,
5, 10, 0.518, 0.378, 0.678,
6, 10, 0.517, 0.377, 0.676,
7, 10, 0.515, 0.377, 0.674,
8, 10, 0.514, 0.376, 0.671,
9, 10, 0.512, 0.376, 0.669,
10, 10, 0.511, 0.375, 0.667,
11, 10, 0.510, 0.375, 0.664,
12, 10, 0.508, 0.374, 0.662,
13, 10, 0.507, 0.374, 0.659,
14, 10, 0.505, 0.373, 0.657,
15, 10, 0.504, 0.373, 0.654,
16, 10, 0.502, 0.372, 0.652,
17, 10, 0.501, 0.372, 0.649,
18, 10, 0.499, 0.372, 0.647,
19, 10, 0.498, 0.371, 0.644,
20, 10, 0.496, 0.371, 0.641,
21, 10, 0.495, 0.371, 0.639,
22, 10, 0.493, 0.370, 0.636,
23, 10, 0.492, 0.370, 0.633,
24, 10, 0.490, 0.370, 0.630,
25, 10, 0.489, 0.369, 0.628,
26, 10, 0.487, 0.369, 0.625,
27, 10, 0.485, 0.369, 0.622,
28, 10, 0.484, 0.368, 0.619,
29, 10, 0.482, 0.368, 0.616,
30, 10, 0.481, 0.368, 0.613,
31, 10, 0.479, 0.368, 0.610,
1, 11, 0.478, 0.368, 0.607,
2, 11, 0.476, 0.367, 0.604,
3, 11, 0.475, 0.367, 0.601,
4, 11, 0.473, 0.367, 0.598,
5, 11, 0.471, 0.367, 0.595,
6, 11, 0.470, 0.367, 0.592,
7, 11, 0.468, 0.367, 0.589,
8, 11, 0.467, 0.366, 0.586,
9, 11, 0.465, 0.366, 0.583,
10, 11, 0.464, 0.366, 0.580,
11, 11, 0.462, 0.366, 0.577,
12, 11, 0.461, 0.366, 0.574,
13, 11, 0.459, 0.366, 0.571,
14, 11, 0.458, 0.366, 0.568,
15, 11, 0.456, 0.366, 0.565,
16, 11, 0.455, 0.366, 0.562,
17, 11, 0.454, 0.366, 0.559,
18, 11, 0.452, 0.365, 0.556,
19, 11, 0.451, 0.365, 0.553,
20, 11, 0.450, 0.365, 0.550,
21, 11, 0.448, 0.365, 0.547,
22, 11, 0.447, 0.365, 0.544,
23, 11, 0.446, 0.365, 0.542,
24, 11, 0.445, 0.365, 0.539,
25, 11, 0.443, 0.365, 0.536,
26, 11, 0.442, 0.365, 0.533,
27, 11, 0.441, 0.365, 0.531,
28, 11, 0.440, 0.365, 0.528,
29, 11, 0.439, 0.365, 0.526,
30, 11, 0.438, 0.365, 0.523,
1, 12, 0.437, 0.365, 0.521,
2, 12, 0.436, 0.365, 0.519,
3, 12, 0.435, 0.365, 0.517,
4, 12, 0.434, 0.365, 0.515,
5, 12, 0.434, 0.365, 0.513,
6, 12, 0.433, 0.365, 0.511,
7, 12, 0.432, 0.365, 0.509,
8, 12, 0.431, 0.365, 0.507,
9, 12, 0.431, 0.365, 0.505,
10, 12, 0.430, 0.365, 0.504,
11, 12, 0.430, 0.365, 0.502,
12, 12, 0.429, 0.365, 0.501,
13, 12, 0.429, 0.365, 0.500,
14, 12, 0.429, 0.365, 0.498,
15, 12, 0.428, 0.365, 0.497,
16, 12, 0.428, 0.365, 0.496,
17, 12, 0.428, 0.365, 0.496,
18, 12, 0.428, 0.365, 0.495,
19, 12, 0.428, 0.365, 0.494,
20, 12, 0.428, 0.365, 0.494,
21, 12, 0.428, 0.365, 0.494,
22, 12, 0.428, 0.365, 0.493,
23, 12, 0.429, 0.365, 0.493,
24, 12, 0.429, 0.366, 0.493,
25, 12, 0.429, 0.366, 0.493,
26, 12, 0.430, 0.366, 0.494,
27, 12, 0.430, 0.366, 0.494,
28, 12, 0.431, 0.366, 0.495,
29, 12, 0.431, 0.366, 0.495,
30, 12, 0.432, 0.366, 0.496,
31, 12, 0.433, 0.366, 0.497),ncol=5,byrow=TRUE);
dimnames(RESULT) <- list(1:366,c("day","month","grad_Tmean","grad_Tmin","grad_Tmax"));
return(RESULT);
}
##Format_______________________________________________________________________________________
HypsoData <- as.double(HypsoData);
ZInputs <- as.double(ZInputs);
##ElevationLayers_Creation_____________________________________________________________________
ZLayers <- as.double(rep(NA,NLayers));
if(!identical(HypsoData,as.double(rep(NA,101)))){
nmoy <- 100 %/% NLayers;
nreste <- 100 %% NLayers;
ncont <- 0;
for(iLayer in 1:NLayers){
if(nreste > 0){ nn <- nmoy+1; nreste <- nreste-1; } else { nn <- nmoy; }
if(nn==1){ ZLayers[iLayer] <- HypsoData[ncont+1]; }
if(nn==2){ ZLayers[iLayer] <- 0.5 * (HypsoData[ncont+1] + HypsoData[ncont+2]); }
if(nn>2 ){ ZLayers[iLayer] <- HypsoData[ncont+nn/2]; }
ncont <- ncont+nn;
}
}
##Precipitation_extrapolation__________________________________________________________________
##Initialisation
LayerPrecip <- list();
if(identical(ZInputs,HypsoData[51]) & NLayers==1){
LayerPrecip[[1]] <- as.double(Precip);
} else {
##Elevation_gradients_for_daily_mean_precipitation
GradP <- GradP_Valery2010(); ### single value
TabGradP <- rep(GradP,length(Precip));
##Extrapolation
##Thresold_of_inputs_median_elevation
Zthreshold <- 4000;
##_On_each_elevation_layer...
for(iLayer in 1:NLayers){
##If_layer_elevation_smaller_than_Zthreshold
if(ZLayers[iLayer] <= Zthreshold){
LayerPrecip[[iLayer]] <- as.double(Precip*exp(TabGradP*(ZLayers[iLayer]-ZInputs)));
##If_layer_elevation_greater_than_Zthreshold
} else {
##If_inputs_median_elevation_smaller_than_Zthreshold
if(ZInputs <= Zthreshold){ LayerPrecip[[iLayer]] <- as.double(Precip*exp(TabGradP*(Zthreshold-ZInputs)));
##If_inputs_median_elevation_greater_then_Zthreshold
} else { LayerPrecip[[iLayer]] <- as.double(Precip); }
}
}
}
##Temperature_extrapolation____________________________________________________________________
##Initialisation
LayerTempMean <- list(); LayerTempMin <- list(); LayerTempMax <- list();
if(identical(ZInputs,HypsoData[51]) & NLayers==1){
LayerTempMean[[1]] <- as.double(TempMean);
if(!is.null(TempMin) & !is.null(TempMax)){ LayerTempMin[[1]] <- as.double(TempMin); LayerTempMax[[1]] <- as.double(TempMax); }
} else {
##Elevation_gradients_for_daily_mean_min_and_max_temperature
GradT <- GradT_Valery2010(); ### Day, Month, GradTmean, GradTmin and GradTmax for iCol=1,2,3,4,5, respectively
TabGradT <- matrix(NA,nrow=length(Precip),ncol=3);
for(iday in 1:366){
ind <- which(as.numeric(format(DatesR,format="%d"))==GradT[iday,1] & as.numeric(format(DatesR,format="%m"))==GradT[iday,2]);
TabGradT[ind,1:3] <- GradT[iday,3:5];
}
##Extrapolation
##On_each_elevation_layer...
for(iLayer in 1:NLayers){
LayerTempMean[[iLayer]] <- as.double(TempMean + (ZInputs-ZLayers[iLayer])*abs(TabGradT[,1])/100);
if(!is.null(TempMin) & !is.null(TempMax)){
LayerTempMin[[iLayer]] <- as.double(TempMin + (ZInputs-ZLayers[iLayer])*abs(TabGradT[,2])/100);
LayerTempMax[[iLayer]] <- as.double(TempMax + (ZInputs-ZLayers[iLayer])*abs(TabGradT[,3])/100);
}
}
}
##Solid_Fraction_for_each_elevation_layer______________________________________________________
LayerFracSolidPrecip <- list();
##Thresold_of_inputs_median_elevation
Zthreshold <- 1500;
##On_each_elevation_layer...
for(iLayer in 1:NLayers){
Option <- "USACE";
if(!is.na(ZInputs)){ if(ZInputs < Zthreshold & !is.null(TempMin) & !is.null(TempMax)){ Option <- "Hydrotel"; } }
##Turcotte_formula_from_Hydrotel
if(Option=="Hydrotel"){
TempMin <- LayerTempMin[[iLayer]];
TempMax <- LayerTempMax[[iLayer]];
SolidFraction <- 1 - TempMax/(TempMax - TempMin);
SolidFraction[TempMin >= 0] <- 0;
SolidFraction[TempMax <= 0] <- 1;
}
##USACE_formula
if(Option=="USACE"){
USACE_Tmin <- -1.0;
USACE_Tmax <- 3.0;
TempMean <- LayerTempMean[[iLayer]];
SolidFraction <- 1- (TempMean - USACE_Tmin)/(USACE_Tmax - USACE_Tmin);
SolidFraction[TempMean > USACE_Tmax] <- 0;
SolidFraction[TempMean < USACE_Tmin] <- 1;
}
LayerFracSolidPrecip[[iLayer]] <- as.double(SolidFraction);
}
##END__________________________________________________________________________________________
return(list(LayerPrecip=LayerPrecip,LayerTempMean=LayerTempMean,LayerTempMin=LayerTempMin,LayerTempMax=LayerTempMax,
LayerFracSolidPrecip=LayerFracSolidPrecip,ZLayers=ZLayers));
}