Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Calibration_Michel <- function(InputsModel, RunOptions, InputsCrit, CalibOptions,
FUN_MOD, FUN_CRIT, FUN_TRANSFO = NULL, verbose = TRUE) {
##_____Arguments_check_____________________________________________________________________
if (!inherits(InputsModel, "InputsModel")) {
stop("InputsModel must be of class 'InputsModel' \n")
return(NULL)
}
if (!inherits(RunOptions, "RunOptions")) {
stop("RunOptions must be of class 'RunOptions' \n")
return(NULL)
}
if (!inherits(InputsCrit, "InputsCrit")) {
stop("InputsCrit must be of class 'InputsCrit' \n")
return(NULL)
}
if (!inherits(CalibOptions, "CalibOptions")) {
stop("CalibOptions must be of class 'CalibOptions' \n")
return(NULL)
}
if (!inherits(CalibOptions, "HBAN")) {
stop("CalibOptions must be of class 'HBAN' if Calibration_Michel is used \n")
return(NULL)
}
##_check_FUN_TRANSFO
if (is.null(FUN_TRANSFO)) {
if (identical(FUN_MOD, RunModel_GR4H )) {
FUN_TRANSFO <- TransfoParam_GR4H
}
if (identical(FUN_MOD, RunModel_GR4J )) {
FUN_TRANSFO <- TransfoParam_GR4J
}
if (identical(FUN_MOD, RunModel_GR5J )) {
FUN_TRANSFO <- TransfoParam_GR5J
}
if (identical(FUN_MOD, RunModel_GR6J )) {
FUN_TRANSFO <- TransfoParam_GR6J
}
if (identical(FUN_MOD, RunModel_GR2M )) {
FUN_TRANSFO <- TransfoParam_GR2M
}
if (identical(FUN_MOD, RunModel_GR1A )) {
FUN_TRANSFO <- TransfoParam_GR1A
}
if (identical(FUN_MOD, RunModel_CemaNeige )) {
FUN_TRANSFO <- TransfoParam_CemaNeige
}
if (identical(FUN_MOD, RunModel_CemaNeigeGR4J) | identical(FUN_MOD, RunModel_CemaNeigeGR5J) | identical(FUN_MOD, RunModel_CemaNeigeGR6J)) {
if (identical(FUN_MOD, RunModel_CemaNeigeGR4J)) {
FUN1 <- TransfoParam_GR4J
FUN2 <- TransfoParam_CemaNeige
if (identical(FUN_MOD, RunModel_CemaNeigeGR5J)) {
FUN1 <- TransfoParam_GR5J
FUN2 <- TransfoParam_CemaNeige
if (identical(FUN_MOD,RunModel_CemaNeigeGR6J)) {
FUN1 <- TransfoParam_GR6J
FUN2 <- TransfoParam_CemaNeige
FUN_TRANSFO <- function(ParamIn, Direction) {
Bool <- is.matrix(ParamIn)
if (Bool == FALSE) {
ParamIn <- rbind(ParamIn)
ParamOut <- NA * ParamIn
NParam <- ncol(ParamIn)
ParamOut[, 1:(NParam-2)] <- FUN1(ParamIn[, 1:(NParam-2)], Direction)
ParamOut[, (NParam-1):NParam ] <- FUN2(ParamIn[, (NParam-1):NParam ], Direction)
if (Bool == FALSE) {
ParamOut <- ParamOut[1, ]
return(ParamOut)
if (is.null(FUN_TRANSFO)) {
stop("FUN_TRANSFO was not found (in Calibration function) \n")
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
}
##_variables_initialisation
ParamFinalR <- NULL
ParamFinalT <- NULL
CritFinal <- NULL
NRuns <- 0
NIter <- 0
if ("StartParamDistrib" %in% names(CalibOptions)) {
PrefilteringType <- 2
} else {
PrefilteringType <- 1
}
if (PrefilteringType == 1) {
NParam <- ncol(CalibOptions$StartParamList)
}
if (PrefilteringType == 2) {
NParam <- ncol(CalibOptions$StartParamDistrib)
}
if (NParam > 20) {
stop("Calibration_Michel can handle a maximum of 20 parameters \n")
return(NULL)
}
HistParamR <- matrix(NA, nrow = 500 * NParam, ncol = NParam)
HistParamT <- matrix(NA, nrow = 500 * NParam, ncol = NParam)
HistCrit <- matrix(NA, nrow = 500 * NParam, ncol = 1)
CritName <- NULL
CritBestValue <- NULL
Multiplier <- NULL
CritOptim <- +1e100
##_temporary_change_of_Outputs_Sim
RunOptions$Outputs_Sim <- RunOptions$Outputs_Cal ### this reduces the size of the matrix exchange with fortran and therefore speeds the calibration
##_____Parameter_Grid_Screening____________________________________________________________
##Definition_of_the_function_creating_all_possible_parameter_sets_from_different_values_for_each_parameter
ProposeCandidatesGrid <- function(DistribParam) {
NewCandidates <- expand.grid(lapply(seq_len(ncol(DistribParamR)), function(x) DistribParam[, x]))
NewCandidates <- unique(NewCandidates) # to avoid duplicates when a parameter is set
Output <- list(NewCandidates = NewCandidates)
}
##Creation_of_new_candidates_______________________________________________
OptimParam <- is.na(CalibOptions$FixedParam)
if (PrefilteringType == 1) {
CandidatesParamR <- CalibOptions$StartParamList
}
if (PrefilteringType == 2) {
DistribParamR <- CalibOptions$StartParamDistrib
DistribParamR[, !OptimParam] <- NA
CandidatesParamR <- ProposeCandidatesGrid(DistribParamR)$NewCandidates
}
##Remplacement_of_non_optimised_values_____________________________________
CandidatesParamR <- apply(CandidatesParamR, 1, function(x) {
x[!OptimParam] <- CalibOptions$FixedParam[!OptimParam]
return(x)
})
if (NParam > 1) {
CandidatesParamR <- t(CandidatesParamR)
} else {
CandidatesParamR <- cbind(CandidatesParamR)
}
##Loop_to_test_the_various_candidates______________________________________
iNewOptim <- 0
Ncandidates <- nrow(CandidatesParamR)
if (verbose & Ncandidates > 1) {
message("List-Screening in progress (", appendLF = FALSE)
}
if (PrefilteringType == 2) {
message("Grid-Screening in progress (", appendLF = FALSE)
message("0%", appendLF = FALSE)
}
for (iNew in 1:nrow(CandidatesParamR)) {
if (verbose & Ncandidates > 1) {
for (k in c(2, 4, 6, 8)) {
if (iNew == round(k / 10 * Ncandidates)) {
message(" ", 10 * k, "%", appendLF = FALSE)
}
}
##Model_run
Param <- CandidatesParamR[iNew, ]
OutputsModel <- FUN_MOD(InputsModel, RunOptions, Param)
##Calibration_criterion_computation
OutputsCrit <- FUN_CRIT(InputsCrit, OutputsModel, verbose = FALSE)
if (!is.na(OutputsCrit$CritValue)) {
if (OutputsCrit$CritValue * OutputsCrit$Multiplier < CritOptim) {
CritOptim <- OutputsCrit$CritValue * OutputsCrit$Multiplier
iNewOptim <- iNew
##Storage_of_crit_info
if (is.null(CritName) | is.null(CritBestValue) | is.null(Multiplier)) {
CritName <- OutputsCrit$CritName
CritBestValue <- OutputsCrit$CritBestValue
Multiplier <- OutputsCrit$Multiplier
}
if (verbose & Ncandidates > 1) {
message(" 100%)\n", appendLF = FALSE)
}
##End_of_first_step_Parameter_Screening____________________________________
ParamStartR <- CandidatesParamR[iNewOptim, ]
if (!is.matrix(ParamStartR)) {
ParamStartR <- matrix(ParamStartR, nrow = 1)
}
ParamStartT <- FUN_TRANSFO(ParamStartR, "RT")
CritStart <- CritOptim
NRuns <- NRuns+nrow(CandidatesParamR)
if (verbose) {
if (Ncandidates > 1) {
message(sprintf("\t Screening completed (%s runs)", NRuns))
if (Ncandidates == 1) {
message("\t Starting point for steepest-descent local search:")
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
message("\t Param = ", paste(sprintf("%8.3f", ParamStartR), collapse = " , "))
message(sprintf("\t Crit %-12s = %.4f", CritName, CritStart * Multiplier))
}
##Results_archiving________________________________________________________
HistParamR[1, ] <- ParamStartR
HistParamT[1, ] <- ParamStartT
HistCrit[1, ] <- CritStart
##_____Steepest_Descent_Local_Search_______________________________________________________
##Definition_of_the_function_creating_new_parameter_sets_through_a_step_by_step_progression_procedure
ProposeCandidatesLoc <- function(NewParamOptimT, OldParamOptimT, RangesT, OptimParam,Pace) {
##Format_checking
if (nrow(NewParamOptimT) != 1 | nrow(OldParamOptimT) != 1) {
stop("each input set must be a matrix of one single line \n")
return(NULL)
}
if (ncol(NewParamOptimT)!=ncol(OldParamOptimT) | ncol(NewParamOptimT) != length(OptimParam)) {
stop("each input set must have the same number of values \n")
return(NULL)
}
##Proposal_of_new_parameter_sets ###(local search providing 2 * NParam-1 new sets)
NParam <- ncol(NewParamOptimT)
VECT <- NULL
for (I in 1:NParam) {
##We_check_that_the_current_parameter_should_indeed_be_optimised
if (OptimParam[I] == TRUE) {
for (J in 1:2) {
Sign <- 2 * J - 3 #Sign can be equal to -1 or +1
##We_define_the_new_potential_candidate
Add <- TRUE
PotentialCandidateT <- NewParamOptimT
PotentialCandidateT[1, I] <- NewParamOptimT[I] + Sign * Pace
##If_we_exit_the_range_of_possible_values_we_go_back_on_the_boundary
if (PotentialCandidateT[1, I] < RangesT[1, I] ) {
PotentialCandidateT[1,I] <- RangesT[1, I]
}
if (PotentialCandidateT[1, I] > RangesT[2, I]) {
PotentialCandidateT[1,I] <- RangesT[2,I]
}
##We_check_the_set_is_not_outside_the_range_of_possible_values
if (NewParamOptimT[I] == RangesT[1, I] & Sign < 0) {
Add <- FALSE
}
if (NewParamOptimT[I] == RangesT[2, I] & Sign > 0) {
Add <- FALSE
}
##We_check_that_this_set_has_not_been_tested_during_the_last_iteration
if (identical(PotentialCandidateT, OldParamOptimT)) {
Add <- FALSE
}
##We_add_the_candidate_to_our_list
if (Add) {
VECT <- c(VECT, PotentialCandidateT)
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
Output <- NULL
Output$NewCandidatesT <- matrix(VECT, ncol = NParam, byrow = TRUE)
return(Output)
}
##Initialisation_of_variables
if (verbose) {
message("Steepest-descent local search in progress")
}
Pace <- 0.64
PaceDiag <- rep(0, NParam)
CLG <- 0.7^(1 / NParam)
Compt <- 0
CritOptim <- CritStart
##Conversion_of_real_parameter_values
RangesR <- CalibOptions$SearchRanges
RangesT <- FUN_TRANSFO(RangesR, "RT")
NewParamOptimT <- ParamStartT
OldParamOptimT <- ParamStartT
##START_LOOP_ITER_________________________________________________________
for (ITER in 1:(100 * NParam)) {
##Exit_loop_when_Pace_becomes_too_small___________________________________
if (Pace < 0.01) {
break
}
##Creation_of_new_candidates______________________________________________
CandidatesParamT <- ProposeCandidatesLoc(NewParamOptimT, OldParamOptimT, RangesT, OptimParam, Pace)$NewCandidatesT
CandidatesParamR <- FUN_TRANSFO(CandidatesParamT, "TR")
##Remplacement_of_non_optimised_values_____________________________________
CandidatesParamR <- apply(CandidatesParamR, 1, function(x) {
x[!OptimParam] <- CalibOptions$FixedParam[!OptimParam]
return(x)
})
if (NParam > 1) {
CandidatesParamR <- t(CandidatesParamR)
} else {
CandidatesParamR <- cbind(CandidatesParamR)
}
##Loop_to_test_the_various_candidates_____________________________________
iNewOptim <- 0
for (iNew in 1:nrow(CandidatesParamR)) {
Param <- CandidatesParamR[iNew, ]
OutputsModel <- FUN_MOD(InputsModel, RunOptions, Param)
OutputsCrit <- FUN_CRIT(InputsCrit, OutputsModel, verbose = FALSE)
if (!is.na(OutputsCrit$CritValue)) {
if (OutputsCrit$CritValue * OutputsCrit$Multiplier < CritOptim) {
CritOptim <- OutputsCrit$CritValue * OutputsCrit$Multiplier
NRuns <- NRuns + nrow(CandidatesParamR)
##When_a_progress_has_been_achieved_______________________________________
OldParamOptimT <- NewParamOptimT
NewParamOptimT <- matrix(CandidatesParamT[iNewOptim, 1:NParam], nrow = 1)
Compt <- Compt + 1
##When_necessary_we_increase_the_pace ### if_successive_progress_occur_in_a_row
if (Compt > 2 * NParam) {
Pace <- Pace * 2
Compt <- 0
VectPace <- NewParamOptimT-OldParamOptimT
for (iC in 1:NParam) {
if (OptimParam[iC]) {
PaceDiag[iC] <- CLG * PaceDiag[iC] + (1-CLG) * VectPace[iC]
##When_no_progress_has_been_achieved_we_decrease_the_pace_________________
Pace <- Pace / 2
Compt <- 0
##Test_of_an_additional_candidate_using_diagonal_progress_________________
if (ITER > 4 * NParam) {
NRuns <- NRuns + 1
iNewOptim <- 0
iNew <- 1
CandidatesParamT <- NewParamOptimT+PaceDiag
if (!is.matrix(CandidatesParamT)) {
CandidatesParamT <- matrix(CandidatesParamT, nrow = 1)
}
##If_we_exit_the_range_of_possible_values_we_go_back_on_the_boundary
for (iC in 1:NParam) {
if (OptimParam[iC]) {
if (CandidatesParamT[iNew, iC] < RangesT[1, iC]) {
CandidatesParamT[iNew, iC] <- RangesT[1, iC]
}
if (CandidatesParamT[iNew, iC] > RangesT[2, iC]) {
CandidatesParamT[iNew, iC] <- RangesT[2, iC]
}
}
CandidatesParamR <- FUN_TRANSFO(CandidatesParamT, "TR")
##Model_run
Param <- CandidatesParamR[iNew, ]
OutputsModel <- FUN_MOD(InputsModel, RunOptions, Param)
##Calibration_criterion_computation
OutputsCrit <- FUN_CRIT(InputsCrit, OutputsModel, verbose = FALSE)
if (OutputsCrit$CritValue * OutputsCrit$Multiplier < CritOptim) {
CritOptim <- OutputsCrit$CritValue * OutputsCrit$Multiplier
iNewOptim <- iNew
}
##When_a_progress_has_been_achieved
if (iNewOptim != 0) {
OldParamOptimT <- NewParamOptimT
NewParamOptimT <- matrix(CandidatesParamT[iNewOptim, 1:NParam], nrow = 1)
}
##Results_archiving_______________________________________________________
NewParamOptimR <- FUN_TRANSFO(NewParamOptimT, "TR")
HistParamR[ITER+1, ] <- NewParamOptimR
HistParamT[ITER+1, ] <- NewParamOptimT
HistCrit[ITER+1, ] <- CritOptim
### if (verbose) { cat(paste("\t Iter ",formatC(ITER,format="d",width=3), " Crit ",formatC(CritOptim,format="f",digits=4), " Pace ",formatC(Pace,format="f",digits=4), "\n",sep=""))}
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
} ##END_LOOP_ITER_________________________________________________________
ITER <- ITER - 1
##Case_when_the_starting_parameter_set_remains_the_best_solution__________
if (CritOptim == CritStart & verbose) {
message("\t No progress achieved")
}
##End_of_Steepest_Descent_Local_Search____________________________________
ParamFinalR <- NewParamOptimR
ParamFinalT <- NewParamOptimT
CritFinal <- CritOptim
NIter <- 1 + ITER
if (verbose) {
message(sprintf("\t Calibration completed (%s iterations, %s runs)", NIter, NRuns))
message("\t Param = ", paste(sprintf("%8.3f", ParamFinalR), collapse = " , "))
message(sprintf("\t Crit %-12s = %.4f", CritName, CritFinal * Multiplier))
}
##Results_archiving_______________________________________________________
HistParamR <- cbind(HistParamR[1:NIter, ])
colnames(HistParamR) <- paste0("Param", 1:NParam)
HistParamT <- cbind(HistParamT[1:NIter, ])
colnames(HistParamT) <- paste0("Param", 1:NParam)
HistCrit <- cbind(HistCrit[1:NIter, ])
###colnames(HistCrit) <- paste("HistCrit")
BoolCrit_Actual <- InputsCrit$BoolCrit
BoolCrit_Actual[OutputsCrit$Ind_notcomputed] <- FALSE
MatBoolCrit <- cbind(InputsCrit$BoolCrit, BoolCrit_Actual)
colnames(MatBoolCrit) <- c("BoolCrit_Requested", "BoolCrit_Actual")
##_____Output______________________________________________________________________________
OutputsCalib <- list(ParamFinalR = as.double(ParamFinalR), CritFinal = CritFinal * Multiplier,
NIter = NIter, NRuns = NRuns,
HistParamR = HistParamR, HistCrit = HistCrit * Multiplier,
MatBoolCrit = MatBoolCrit,
CritName = CritName, CritBestValue = CritBestValue)
class(OutputsCalib) <- c("OutputsCalib", "HBAN")
return(OutputsCalib)