Newer
Older
Delaigue Olivier
committed
Imax <- function(InputsModel,
IndPeriod_Run,
tested_values = seq(0.1, 3, 0.1)) {
Delaigue Olivier
committed
##_____Arguments_check_____________________________________________________________________
if (!inherits(InputsModel, "InputsModel")) {
stop("'InputsModel' must be of class 'InputsModel'")
}
if (!inherits(InputsModel, "hourly")) {
stop("'InputsModel' must be of class 'hourly'")
}
if (!(class(tested_values) == "numeric")) {
Delaigue Olivier
committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
stop("'tested_values' must be 'numeric'")
}
##check_IndPeriod_Run
if (!is.vector(IndPeriod_Run)) {
stop("'IndPeriod_Run' must be a vector of numeric values")
}
if (!is.numeric(IndPeriod_Run)) {
stop("'IndPeriod_Run' must be a vector of numeric values")
}
if (!identical(as.integer(IndPeriod_Run), as.integer(seq(from = IndPeriod_Run[1], to = tail(IndPeriod_Run, 1), by = 1)))) {
stop("'IndPeriod_Run' must be a continuous sequence of integers")
}
if (storage.mode(IndPeriod_Run) != "integer") {
stop("'IndPeriod_Run' should be of type integer")
}
##aggregate data at the daily time step
TabSeries <- data.frame(DatesR = InputsModel$DatesR[IndPeriod_Run],
Precip = InputsModel$Precip[IndPeriod_Run],
PotEvap = InputsModel$PotEvap[IndPeriod_Run])
daily_data <- SeriesAggreg(TabSeries, "hourly", "daily",
ConvertFun = c("sum", "sum"))
##calculate total interception of daily GR models on the period
cum_daily <- sum(pmin(daily_data$Precip, daily_data$PotEvap))
##calculate total interception of the GR5H interception store on the period
## and compute difference with daily values
differences <- array(NA, c(length(tested_values)))
for (Imax in tested_values) {
C0 <- 0
cum_hourly <- 0
for (i in IndPeriod_Run) {
Ec <- min(InputsModel$PotEvap[i], InputsModel$Precip[i] + C0)
Pth <- max(0, InputsModel$Precip[i] - (Imax-C0)-Ec)
Delaigue Olivier
committed
C0 <- C0 + InputsModel$Precip[i] - Ec - Pth
cum_hourly <- cum_hourly + Ec
}
differences[which(Imax == tested_values)] <- abs(cum_hourly - cum_daily)
}
##return the Imax value that minimises the difference
return(tested_values[which.min(differences)])
}