RunModel_GR5J.Rd 5.55 KiB
\encoding{UTF-8}
\name{RunModel_GR5J}
\alias{RunModel_GR5J}
\title{Run with the GR5J hydrological model}
\description{
Function which performs a single run for the GR5J daily lumped model over the test period.
\usage{
RunModel_GR5J(InputsModel, RunOptions, Param)
\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 5 parameters
  \tabular{ll}{
    GR5J X1 \tab production store capacity [mm]             \cr
    GR5J X2 \tab intercatchment exchange coefficient [mm/d] \cr
    GR5J X3 \tab routing store capacity [mm]                \cr
    GR5J X4 \tab unit hydrograph time constant [d]          \cr
    GR5J X5 \tab intercatchment exchange threshold [-]      \cr
\value{
[list] list containing the function outputs organised as follows:
  \tabular{ll}{
    \emph{$DatesR  } \tab [POSIXlt] series of dates                                                  \cr
    \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d]              \cr
    \emph{$Precip  } \tab [numeric] series of input total precipitation [mm/d]                       \cr
    \emph{$Prod    } \tab [numeric] series of production store level [mm]                            \cr
    \emph{$Pn      } \tab [numeric] series of net rainfall [mm/d]                                    \cr
    \emph{$Ps      } \tab [numeric] series of the part of Pn filling the production store [mm/d]     \cr
    \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/d]                       \cr
    \emph{$Perc    } \tab [numeric] series of percolation (PERC) [mm/d]                              \cr
    \emph{$PR      } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                   \cr
    \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                \cr
    \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                \cr
    \emph{$Rout    } \tab [numeric] series of routing store level [mm]                               \cr
    \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/d]      \cr
    \emph{$AExch1  } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
    \emph{$AExch2  } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
    \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]        \cr
    \emph{$QR      } \tab [numeric] series of routing store outflow (QR) [mm/d]                      \cr
    \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]        \cr
    \emph{$Qsim    } \tab [numeric] series of simulated discharge [mm/d]                             \cr
    \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
  (refer to the provided references or to the package source code for further details on these model outputs)
\details{
For further details on the model, see the references section.
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
\cr
\cr
\if{html}{\figure{diagramGR5J-EN.png}{options: width="60\%" alt="Figure: diagramGR5J-EN.png"}}
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
\if{latex}{\figure{diagramGR5J-EN.pdf}{options: width=6cm}} } \examples{ library(airGR) ## loading catchment data data(L0123001) ## preparation of the InputsModel object InputsModel <- CreateInputsModel(FUN_MOD = RunModel_GR5J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E) ## run period selection Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1990-01-01"), which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1999-12-31")) ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR5J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run) ## simulation Param <- c(X1 = 245.918, X2 = 1.027, X3 = 90.017, X4 = 2.198, X5 = 0.434) OutputsModel <- RunModel_GR5J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) ## results preview plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run]) ## efficiency criterion: Nash-Sutcliffe Efficiency InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run]) OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) } \author{ Laurent Coron, Claude Michel, Nicolas Le Moine, Olivier Delaigue, Guillaume Thirel } \references{ Le Moine, N. (2008). Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances et du réalisme des modèles pluie-débit ? PhD thesis (in French), UPMC - Cemagref Antony, Paris, France. \cr\cr Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T. and Andréassian, V. (2011). A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. Journal of Hydrology, 411(1-2), 66-76, doi: \doi{10.1016/j.jhydrol.2011.09.034}. } \seealso{ \code{\link{RunModel_GR4J}}, \code{\link{RunModel_GR6J}}, \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}. }