An error occurred while loading the file. Please try again.
-
Dorchies David authored
- Replace wrong test `RunOptions$IndPeriod_WarmUp != 0L` by `!identical(RunOptions$IndPeriod_WarmUp, 0L)` - Manage that WarmUpQsim is optional during calibration Refs #137
f04096da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
# -*- coding: utf-8 -*-
"""
created on January 6, 2020.
Update March 2022
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE),Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS) and Guillaume BLANCHY (ILVO).
"""
import os
import io
import json
import numpy as np
import csv
import time
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
import minimalmodbus # for programmable power supply
# from mqtt_setup import mqtt_client_setup
# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
import board # noqa
import busio # noqa
import adafruit_tca9548a # noqa
import adafruit_ads1x15.ads1115 as ads # noqa
from adafruit_ads1x15.analog_in import AnalogIn # noqa
from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa
from adafruit_mcp230xx.mcp23017 import MCP23017 # noqa
import digitalio # noqa
from digitalio import Direction # noqa
from gpiozero import CPUTemperature # noqa
arm64_imports = True
except ImportError as error:
print(colored(f'Import error: {error}', 'yellow'))
arm64_imports = False
except Exception as error:
print(colored(f'Unexpected error: {error}', 'red'))
exit()
class OhmPi(object):
"""Create the main OhmPi object.
Parameters
----------
config : str, optional
Path to the .json configuration file.
sequence : str, optional
Path to the .txt where the sequence is read. By default, a 1 quadrupole
sequence: 1, 2, 3, 4 is used.
"""
def __init__(self, config=None, sequence=None, mqtt=False, on_pi=None, idps=False):
# flags and attributes
if on_pi is None:
_, on_pi = OhmPi.get_platform()
self.sequence = sequence
self.on_pi = on_pi # True if run from the RaspberryPi with the hardware, otherwise False for random data
self.status = 'idle' # either running or idle
self.run = False # flag is True when measuring
self.thread = None # contains the handle for the thread taking the measurement
self.path = 'data/' # where to save the .csv
# set loggers
config_exec_logger, _, config_data_logger, _, _ = setup_loggers(mqtt=mqtt) # TODO: add SOH
self.data_logger = config_data_logger
self.exec_logger = config_exec_logger
self.soh_logger = None
print('Loggers:')
print(colored(f'Exec logger {self.exec_logger.handlers if self.exec_logger is not None else "None"}', 'blue'))
print(colored(f'Data logger {self.data_logger.handlers if self.data_logger is not None else "None"}', 'blue'))
print(colored(f'SOH logger {self.soh_logger.handlers if self.soh_logger is not None else "None"}', 'blue'))
# read in hardware parameters (settings.py)
self._read_hardware_parameters()
# default acquisition parameters
self.pardict = {
'injection_duration': 0.2,
'nbr_meas': 100,
'sequence_delay': 1,
'nb_stack': 1,
'export_path': 'data/measurement.csv'
}
# read in acquisition parameters
if config is not None:
self._read_acquisition_parameters(config)
self.exec_logger.debug('Initialized with configuration:' + str(self.pardict))
# read quadrupole sequence
if sequence is None:
self.sequence = np.array([[1, 2, 3, 4]])
else:
self.read_quad(sequence)
self.idps = idps # flag to use dps for injection or not
# connect to components on the OhmPi board
if self.on_pi:
# activation of I2C protocol
self.i2c = busio.I2C(board.SCL, board.SDA) # noqa
# I2C connexion to MCP23008, for current injection
self.mcp = MCP23008(self.i2c, address=0x20)
# ADS1115 for current measurement (AB)
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x49)
# ADS1115 for voltage measurement (MN)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x48)
# current injection module
if self.idps:
self.DPS = minimalmodbus.Instrument(port='/dev/ttyUSB0', slaveaddress=1) # port name, slave address (in decimal)
self.DPS.serial.baudrate = 9600 # Baud rate 9600 as listed in doc
self.DPS.serial.bytesize = 8 #
self.DPS.serial.timeout = 1 # greater than 0.5 for it to work
self.DPS.debug = False #
self.DPS.serial.parity = 'N' # No parity
self.DPS.mode = minimalmodbus.MODE_RTU # RTU mode
self.DPS.write_register(0x0001, 40, 0) # max current allowed (36 mA for relays)
# (last number) 0 is for mA, 3 is for A
# injection courant and measure (TODO check if it works, otherwise back in run_measurement())
self.pin0 = self.mcp.get_pin(0)
self.pin0.direction = Direction.OUTPUT
self.pin0.value = False
self.pin1 = self.mcp.get_pin(1)
self.pin1.direction = Direction.OUTPUT
self.pin1.value = False
def _read_acquisition_parameters(self, config):
"""Read acquisition parameters.
Parameters can be:
- nb_electrodes (number of electrode used, if 4, no MUX needed)
- injection_duration (in seconds)
- nbr_meas (total number of times the sequence will be run)
- sequence_delay (delay in second between each sequence run)
- nb_stack (number of stack for each quadrupole measurement)
- export_path (path where to export the data, timestamp will be added to filename)
Parameters
----------
config : str
Path to the .json or dictionary.
"""
if isinstance(config, dict):
self.pardict.update(config)
else:
with open(config) as json_file:
dic = json.load(json_file)
self.pardict.update(dic)
self.exec_logger.debug('Acquisition parameters updated: ' + str(self.pardict))
def _read_hardware_parameters(self):
"""Read hardware parameters from config.py
"""
from config import OHMPI_CONFIG
self.id = OHMPI_CONFIG['id'] # ID of the OhmPi
self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm
self.Imax = OHMPI_CONFIG['Imax'] # maximum current
self.exec_logger.warning(f'The maximum current cannot be higher than {self.Imax} mA')
self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V
self.coef_p3 = OHMPI_CONFIG['coef_p3'] # slope for current conversion for ads.P3, measurement in V/V
# self.offset_p2 = OHMPI_CONFIG['offset_p2'] parameter removed
# self.offset_p3 = OHMPI_CONFIG['offset_p3'] parameter removed
self.nb_samples = OHMPI_CONFIG['integer'] # number of samples measured for each stack
self.version = OHMPI_CONFIG['version'] # hardware version
self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes
self.board_address = OHMPI_CONFIG['board_address']
self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')
@staticmethod
def find_identical_in_line(quads):
"""Find quadrupole which where A and B are identical.
If A and B are connected to the same relay, the Pi burns (short-circuit).
Parameters
----------
quads : numpy.ndarray
List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
Returns
-------
output : 1D array of int
List of index of rows where A and B are identical.
"""
# TODO is this needed for M and N?
# if we have a 1D array (so only 1 quadrupole), make it 2D
if len(quads.shape) == 1:
quads = quads[None, :]
output = np.where(quads[:, 0] == quads[:, 1])[0]
# output = []
# if array_object.ndim == 1:
# temp = np.zeros(4)
# for i in range(len(array_object)):
# temp[i] = np.count_nonzero(array_object == array_object[i])
# if any(temp > 1):
# output.append(0)
# else:
# for i in range(len(array_object[:,1])):
# temp = np.zeros(len(array_object[1,:]))
# for j in range(len(array_object[1,:])):
# temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j])
# if any(temp > 1):
# output.append(i)
return output
@staticmethod
def get_platform():
"""Get platform name and check if it is a raspberry pi
Returns
=======
str, bool
name of the platform on which the code is running, boolean that is true if the platform is a raspberry pi"""
platform = 'unknown'
on_pi = False
try:
with io.open('/sys/firmware/devicetree/base/model', 'r') as f:
platform = f.read().lower()
if 'raspberry pi' in platform:
on_pi = True
except FileNotFoundError:
pass
return platform, on_pi
def read_quad(self, filename):
"""Read quadrupole sequence from file.
Parameters
----------
filename : str
Path of the .csv or .txt file with A, B, M and N electrodes.
Electrode index start at 1.
Returns
-------
output : numpy.ndarray
Array of shape (number quadrupoles * 4).
"""
output = np.loadtxt(filename, delimiter=" ", dtype=int) # load quadrupole file
# locate lines where the electrode index exceeds the maximum number of electrodes
test_index_elec = np.array(np.where(output > self.max_elec))
# locate lines where electrode A == electrode B
test_same_elec = self.find_identical_in_line(output)
# if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
if test_index_elec.size != 0:
for i in range(len(test_index_elec[0, :])):
self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
f'exceeds the maximum number of electrodes')
# sys.exit(1)
output = None
elif len(test_same_elec) != 0:
for i in range(len(test_same_elec)):
self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
# sys.exit(1)
output = None
if output is not None:
self.exec_logger.debug('Sequence of {:d} quadrupoles read.'.format(output.shape[0]))
self.sequence = output
def switch_mux(self, electrode_nr, state, role):
"""Select the right channel for the multiplexer cascade for a given electrode.
Parameters
----------
electrode_nr : int
Electrode index to be switched on or off.
state : str
Either 'on' or 'off'.
role : str
Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
"""
if self.sequence.max() <= 4: # only 4 electrodes so no MUX
pass
else:
# choose with MUX board
tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role])
# find I2C address of the electrode and corresponding relay
# TODO from number of electrode, the below can be guessed
# considering that one MCP23017 can cover 16 electrodes
electrode_nr = electrode_nr - 1 # switch to 0 indexing
i2c_address = 7 - electrode_nr // 16 # quotient without rest of the division
relay_nr = electrode_nr - (electrode_nr // 16) * 16
relay_nr = relay_nr + 1 # switch back to 1 based indexing
# if electrode_nr < 17:
# i2c_address = 7
# relay_nr = electrode_nr
# elif 16 < electrode_nr < 33:
# i2c_address = 6
# relay_nr = electrode_nr - 16
# elif 32 < electrode_nr < 49:
# i2c_address = 5
# relay_nr = electrode_nr - 32
# elif 48 < electrode_nr < 65:
# i2c_address = 4
# relay_nr = electrode_nr - 48
if i2c_address is not None:
# select the MCP23017 of the selected MUX board
mcp2 = MCP23017(tca[i2c_address])
mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT
if state == 'on':
mcp2.get_pin(relay_nr - 1).value = True
else:
mcp2.get_pin(relay_nr - 1).value = False
self.exec_logger.debug(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}')
else:
self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}')
def switch_mux_on(self, quadrupole):
""" Switch on multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
# another check to be sure A != B
if quadrupole[0] != quadrupole[1]:
for i in range(0, 4):
self.switch_mux(quadrupole[i], 'on', roles[i])
else:
self.exec_logger.error('A == B -> short circuit risk detected!')
def switch_mux_off(self, quadrupole):
""" Switch off multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
self.switch_mux(quadrupole[i], 'off', roles[i])
def reset_mux(self):
"""Switch off all multiplexer relays."""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
for j in range(1, self.max_elec + 1):
self.switch_mux(j, 'off', roles[i])
self.exec_logger.debug('All MUX switched off.')
def gain_auto(self, channel):
""" Automatically set the gain on a channel
Parameters
----------
channel:
Returns
-------
float
"""
gain = 2 / 3
if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023):
gain = 2
elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508):
gain = 4
elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250):
gain = 8
elif abs(channel.voltage) < 0.256:
gain = 16
self.exec_logger.debug(f'Setting gain to {gain}')
return gain
def compute_tx_volt(self, best_tx_injtime=1):
"""Compute best voltage to inject to be in our range of Vmn
(10 mV - 4500 mV) and current (2 - 45 mA)
"""
# inferring best voltage for injection Vab
# we guess the polarity on Vmn by trying both cases. once found
# we inject a starting voltage of 5V and measure our Vmn. Based
# on the data we then compute a multiplifcation factor to inject
# a voltage that will fall right in the measurable range of Vmn
# (10 - 4500 mV) and current (45 mA max)
# select a polarity to start with
self.pin0.value = True
self.pin1.value = False
self.DPS.write_register(0x09, 1) # DPS5005 on
tau = np.nan
# voltage optimization
for volt in range(2, 10, 2):
print('trying with v:', volt)
self.DPS.write_register(0x0000,volt,2) # fixe la voltage pour la mesure à 5V
time.sleep(best_tx_injtime) # inject for 1 s at least on DPS5005
# autogain
self.ads_current = ads.ADS1115(self.i2c, gain=2/3, data_rate=128, address=0x49)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2/3, data_rate=128, address=0x48)
print('current P0', AnalogIn(self.ads_current, ads.P0).voltage)
print('voltage P0', AnalogIn(self.ads_voltage, ads.P0).voltage)
print('voltage P2', AnalogIn(self.ads_voltage, ads.P2).voltage)
gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0))
gain_voltage0 = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0))
gain_voltage2 = self.gain_auto(AnalogIn(self.ads_voltage, ads.P2))
gain_voltage = np.min([gain_voltage0, gain_voltage2])
print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage))
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=128, address=0x49)
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=128, address=0x48)
# we measure the voltage on both A0 and A2 to guess the polarity
I = (AnalogIn(self.ads_current, ads.P0).voltage) * 1000/50/2 # measure current
U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000 # measure voltage
U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000
print('I (mV)', I*50*2)
print('I (mA)', I)
print('U0 (mV)', U0)
print('U2 (mV)', U2)
# check polarity
polarity = 1 # by default, we guessed it right
if U0 < 0: # we guessed it wrong, let's use a correction factor
polarity = -1
print('polarity', polarity)
# TODO (edge case) if PS is negative and greater than Vmn, it can
# potentially cause two negative values so none above 0
# check if we can actually measure smth
ok = True
if I > 2 and I <= 45:
if (((U0 < 4500) and (polarity > 0))
or ((2 < 4500) and (polarity < 0))):
if (((U0 > 10) and (polarity > 0))
or ((U2 > 10) and (polarity < 0))):
# ok, we compute tau
# inferring polarity and computing best voltage to inject
# by hardware design we can measure 10-4500 mV and 2-45 mA
# we will decide on the Vab to fall within this range
if U0 > 0: # we guessed the polarity right, let's keep that
tauI = 45 / I # compute ratio to maximize measuring range of I
tauU = 4500 / U0 # compute ratio to maximize measuring range of U
elif U0 < 0: # we guessed it wrong, let's use a correction factor
tauI = 45 / I
tauU = 4500 / U2
# let's be careful and avoid saturation by taking only 90% of
# the smallest factor
if tauI < tauU:
tau = tauI * 0.9
elif tauI > tauU:
tau = tauU * 0.9
print('tauI', tauI)
print('tauU', tauU)
print('best tau is', tau)
break
else:
# too weak, but let's try with a higher voltage
pass # we'll come back to the loop with higher voltage
else:
print('voltage out of range, max 4500 mV')
# doesn't work, tau will be NaN
break
else:
if I <= 2:
# let's try again
pass
else:
print('current out of range, max 45 mA')
# doesn't work, tau will be NaN
break
if tau == np.nan:
print('voltage out of range')
self.DPS.write_register(0x09, 0) # DPS5005 off
# we keep DPS5005 on if we computed a tau successfully
# turn off Vab
self.pin0.value = False
self.pin1.value = False
return tau*volt, polarity
def run_measurement(self, quad=[1, 2, 3, 4], nb_stack=None, injection_duration=None,
best_tx=True, tx_volt=0, autogain=True, best_tx_injtime=1):
"""Do a 4 electrode measurement and measure transfer resistance obtained.
Parameters
----------
quad : list of int
Quadrupole to measure.
nb_stack : int, optional
Number of stacks. A stacl is considered two half-cycles (one
positive, one negative).
injection_duration : int, optional
Injection time in seconds.
best_tx : bool, optional
If True, will attempt to find the best Tx voltage that fill
within our measurement range. If it cannot find it, it will
return NaN as measurement. If False, it will make the
measurement with whatever it has as voltage and never returns
NaN. Finding the best tx voltage can take some time before
each quadrupole.
tx_volt : float, optional
If specified, voltage will be imposed disregarding the value
of best_tx argument.
autogain : bool, optional
If True, will adapt the gain of the ADS1115 to maximize the
resolution of the reading.
"""
# check arguments
if nb_stack is None:
nb_stack = self.pardict['nb_stack']
if injection_duration is None:
injection_duration = self.pardict['injection_duration']
# inner variable initialization
sum_i = 0
sum_vmn = 0
sum_ps = 0
self.exec_logger.debug('Starting measurement')
self.exec_logger.info('Waiting for data')
# get best voltage to inject
if self.idps and tx_volt == 0:
tx_volt, polarity = self.compute_tx_volt(best_tx_injtime=best_tx_injtime)
print('tx volt V:', tx_volt)
else:
polarity = 1
# first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous)
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x49, mode=0)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=128, address=0x48, mode=0)
# turn on the power supply
oor = False
if self.idps:
if tx_volt != np.nan:
self.DPS.write_register(0x0000, tx_volt, 2) # set tx voltage in V
self.DPS.write_register(0x09, 1) # DPS5005 on
else:
print('no best voltage found, will not take measurement')
oor = True
if oor == False:
if autogain:
# compute autogain
self.pin0.value = True
self.pin1.value = False
time.sleep(injection_duration)
gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0))
if polarity > 0:
gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0))
else:
gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P2))
self.pin0.value = False
self.pin1.value = False
print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage))
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x49, mode=0)
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x48, mode=0)
# one stack = 2 half-cycles (one positive, one negative)
pinMN = 0 if polarity > 0 else 2
# start counter
# we sample every 10 ms (as using AnalogIn for both current
# and voltage takes about 7 ms). When we go over the injection
# duration, we break the loop and truncate the meas arrays
# only the last values in meas will be taken into account
start_time = time.time()
for n in range(0, nb_stack * 2): # for each half-cycles
# sampling for each stack at the end of the injection
sampling_interval = 10 # ms
self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1
meas = np.zeros((self.nb_samples, 2))
# current injection
if (n % 2) == 0:
self.pin0.value = True
self.pin1.value = False
else:
self.pin0.value = False
self.pin1.value = True # current injection nr2
start_delay = time.time() # stating measurement time
#time.sleep(injection_duration) # delay depending on current injection duration
# measurement of current i and voltage u
dt = 0
for k in range(0, self.nb_samples):
# reading current value on ADS channels
meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
if pinMN == 0:
meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000
else:
meas[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000 *-1
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay # real injection time (s)
if dt > (injection_duration - 0 * sampling_interval /1000):
break
# stop current injection
self.pin0.value = False
self.pin1.value = False
end_delay = time.time()
# truncate the meas array if we didn't fill the last samples
meas = meas[:k+1:]
# we alternate on which ADS1115 pin we measure because of sign of voltage
if pinMN == 0:
pinMN = 2
else:
pinMN = 0
# take average from the samples per stack, then sum them all
# average for the last third of the stacked values
# is done outside the loop
sum_i = sum_i + (np.mean(meas[-int(meas.shape[0]//3):, 0]))
vmn1 = np.mean(meas[-int(meas.shape[0]//3), 1])
if (n % 2) == 0:
sum_vmn = sum_vmn - vmn1
sum_ps = sum_ps + vmn1
else:
sum_vmn = sum_vmn + vmn1
sum_ps = sum_ps + vmn1
# TODO get battery voltage and warn if battery is running low
# TODO send a message on SOH stating the battery level
# wait once the actual injection time between two injection
# so it's a 50% duty cycle
print('crenaux (s)', (end_delay - start_delay))
print('sleep for (s)', injection_duration - (end_delay - start_delay))
time.sleep(dt)
#time.sleep(injection_duration) # off time between half-cycles
# time.sleep(2*(end_delay - start_delay) - (end_calc - start_delay))
if self.idps:
self.DPS.write_register(0x0000, 0, 2) # reset to 0 volt
self.DPS.write_register(0x09, 0) # DPS5005 off
else:
sum_i = np.nan
sum_vmn = np.nan
sum_ps = np.nan
# create a dictionary and compute averaged values from all stacks
d = {
"time": datetime.now().isoformat(),
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
"inj time [ms]": (end_delay - start_delay) * 1000,
"Vmn [mV]": sum_vmn / (2 * nb_stack),
"I [mA]": sum_i / (2 * nb_stack),
"R [ohm]": sum_vmn / sum_i,
"Ps [mV]": sum_ps / (2 * nb_stack),
"nbStack": nb_stack,
"CPU temp [degC]": CPUTemperature().temperature,
"Time [s]": (time.time() - start_time),
"Nb samples [-]": self.nb_samples
}
print(d)
# round number to two decimal for nicer string output
output = [f'{k}\t' for k in d.keys()]
output = str(output)[:-1] + '\n'
for k in d.keys():
if isinstance(d[k], float):
val = np.round(d[k], 2)
else:
val = d[k]
output += f'{val}\t'
output = output[:-1]
self.exec_logger.debug(output)
return d
def rs_check(self):
""" Check contact resistance.
"""
# create custom sequence where MN == AB
# we only check the electrodes which are in the sequence (not all might be connected)
elec = np.sort(np.unique(self.sequence.flatten())) # assumed order
quads = np.vstack([
elec[:-1],
elec[1:],
elec[:-1],
elec[1:],
]).T
# create filename to store RS
export_path_rs = self.pardict['export_path'].replace('.csv', '') \
+ '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'
# perform RS check
self.run = True
self.status = 'running'
# make sure all mux are off to start with
self.reset_mux()
# measure all quad of the RS sequence
for i in range(0, quads.shape[0]):
quad = quads[i, :] # quadrupole
self.switch_mux_on(quad) # put before raising the pins (otherwise conflict i2c)
d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=0.5, tx_volt=5, autogain=True)
# NOTE (GB): I'd use the self.run_measurement() for all this middle part so we an make use of autogain and so ...
# call the switch_mux function to switch to the right electrodes
#self.switch_mux_on(quad)
# run a measurement
#current_measurement = self.run_measurement(quad, 1, 0.25)
# switch mux off
#self.switch_mux_off(quad)
# save data and print in a text file
#self.append_and_save(export_path_rs, current_measurement)
# current injection
# self.pin0 = self.mcp.get_pin(0)
# self.pin0.direction = Direction.OUTPUT
# self.pin1 = self.mcp.get_pin(1)
# self.pin1.direction = Direction.OUTPUT
# self.pin0.value = False
# self.pin1.value = False
# # call the switch_mux function to switch to the right electrodes
# self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
# # ADS1115 for voltage measurement (MN)
# self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
# self.pin1.value = True # inject from pin1 to self.pin0
# self.pin0.value = False
# time.sleep(0.5)
# # measure current and voltage
# current = AnalogIn(self.ads_current, ads.P0).voltage / (50 * self.r_shunt)
# voltage = -AnalogIn(self.ads_voltage, ads.P0, ADS.P2).voltage * 2.5
# resistance = voltage / current
current = d['R [ohm]']
voltage = d['Vmn [mV]']
current = d['I [mA]']
print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} Ohm'.format(
current, voltage, resistance))
# compute resistance measured (= contact resistance)
resist = abs(resistance / 1000)
msg = 'Contact resistance {:s}: {:.3f} kOhm'.format(
str(quad), resist)
#print(msg)
self.exec_logger.debug(msg)
# if contact resistance = 0 -> we have a short circuit!!
if resist < 1e-5:
msg = '!!!SHORT CIRCUIT!!! {:s}: {:.3f} kOhm'.format(
str(quad), resist)
self.exec_logger.warning(msg)
print(msg)
# save data and print in a text file
self.append_and_save(export_path_rs, {
'A': quad[0],
'B': quad[1],
'RS [kOhm]': resist,
})
# close mux path and put pin back to GND
self.switch_mux_off(quad)
#self.pin0.value = False
#self.pin1.value = False
self.reset_mux()
self.status = 'idle'
self.run = False
#
# # TODO if interrupted, we would need to restore the values
# # TODO or we offer the possiblity in 'run_measurement' to have rs_check each time?
@staticmethod
def append_and_save(filename, last_measurement):
"""Append and save last measurement dataframe.
Parameters
----------
filename : str
filename to save the last measurement dataframe
last_measurement : dict
Last measurement taken in the form of a python dictionary
"""
if os.path.isfile(filename):
# Load data file and append data to it
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=False)
else:
# create data file and add headers
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writeheader()
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=True)
def measure(self):
"""Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'.
"""
self.run = True
self.status = 'running'
self.exec_logger.debug(f'Status: {self.status}')
def func():
for g in range(0, self.pardict["nbr_meas"]): # for time-lapse monitoring
if self.run is False:
self.exec_logger.warning('Data acquisition interrupted')
break
t0 = time.time()
# create filename with timestamp
filename = self.pardict["export_path"].replace('.csv',
f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
self.exec_logger.debug(f'Saving to {filename}')
# make sure all multiplexer are off
self.reset_mux()
# measure all quadrupole of the sequence
for i in range(0, self.sequence.shape[0]):
quad = self.sequence[i, :] # quadrupole
if self.run is False:
break
# call the switch_mux function to switch to the right electrodes
self.switch_mux_on(quad)
# run a measurement
if self.on_pi:
current_measurement = self.run_measurement(quad, self.pardict["nb_stack"],
self.pardict["injection_duration"])
else: # for testing, generate random data
current_measurement = {
'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]],
'R [ohm]': np.abs(np.random.randn(1))
}
# switch mux off
self.switch_mux_off(quad)
# log data to the data logger
self.data_logger.info(f'{current_measurement}')
# save data and print in a text file
self.append_and_save(filename, current_measurement)
self.exec_logger.debug('{:d}/{:d}'.format(i + 1, self.sequence.shape[0]))
# compute time needed to take measurement and subtract it from interval
# between two sequence run (= sequence_delay)
measuring_time = time.time() - t0
sleep_time = self.pardict["sequence_delay"] - measuring_time
if sleep_time < 0:
# it means that the measuring time took longer than the sequence delay
sleep_time = 0
self.exec_logger.warning('The measuring time is longer than the sequence delay. '
'Increase the sequence delay')
# sleeping time between sequence
if self.pardict["nbr_meas"] > 1:
time.sleep(sleep_time) # waiting for next measurement (time-lapse)
self.status = 'idle'
self.thread = threading.Thread(target=func)
self.thread.start()
def stop(self):
"""Stop the acquisition.
"""
self.run = False
if self.thread is not None:
self.thread.join()
self.exec_logger.debug(f'Status: {self.status}')
VERSION = '2.1.0'
print(colored(r' ________________________________' + '\n' +
r'| _ | | | || \/ || ___ \_ _|' + '\n' +
r'| | | | |_| || . . || |_/ / | |' + '\n' +
r'| | | | _ || |\/| || __/ | |' + '\n' +
r'\ \_/ / | | || | | || | _| |_' + '\n' +
r' \___/\_| |_/\_| |_/\_| \___/ ', 'red'))
print('OhmPi start')
print('Version:', VERSION)
platform, on_pi = OhmPi.get_platform()
if on_pi:
print(colored(f'Running on {platform} platform', 'green'))
# TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
# and emit a warning otherwise
if not arm64_imports:
print(colored(f'Warning: Required packages are missing.\n'
f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow'))
else:
print(colored(f'Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))
current_time = datetime.now()
print(current_time.strftime("%Y-%m-%d %H:%M:%S"))
# for testing
if __name__ == "__main__":
ohmpi = OhmPi(config='ohmpi_param.json')
ohmpi.run_measurement()
#ohmpi.measure()
#ohmpi.read_quad('breadboard.txt')
#ohmpi.measure()
#time.sleep(20)
#ohmpi.stop()