RunModel_CemaNeigeGR6J.Rd 10.23 KiB
\encoding{UTF-8}
\name{RunModel_CemaNeigeGR6J}
\alias{RunModel_CemaNeigeGR6J}
\title{Run with the CemaNeigeGR6J hydrological model}
\description{
Function which performs a single run for the CemaNeige-GR6J daily lumped model.
\usage{
RunModel_CemaNeigeGR6J(InputsModel, RunOptions, Param)
\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 8 (or 10 parameters if \code{IsHyst = TRUE}, see \code{\link{CreateRunOptions}} for details)
  \tabular{ll}{
    GR6J X1      \tab production store capacity [mm]                                          \cr
    GR6J X2      \tab intercatchment exchange coefficient [mm/d]                              \cr
    GR6J X3      \tab routing store capacity [mm]                                             \cr
    GR6J X4      \tab unit hydrograph time constant [d]                                       \cr
    GR6J X5      \tab intercatchment exchange threshold [-]                                   \cr
    GR6J X6      \tab exponential store depletion coefficient [mm]                            \cr
    CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-]                   \cr
    CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d]                                   \cr
    CemaNeige X3 \tab (optional) accumulation threshold [mm] (needed if \code{IsHyst = TRUE}) \cr
    CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall defining the melt threshold [-] (needed if \code{IsHyst = TRUE})\cr
\value{
[list] containing the function outputs organised as follows:
  \tabular{ll}{
    \emph{$DatesR  } \tab [POSIXlt] series of dates                                                     \cr
    \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration (E) [mm/d]             \cr
    \emph{$Precip  } \tab [numeric] series of input total precipitation (P) [mm/d]                      \cr
    \emph{$Prod    } \tab [numeric] series of production store level (S) [mm]                           \cr
    \emph{$Pn      } \tab [numeric] series of net rainfall (Pn) [mm/d]                                  \cr
    \emph{$Ps      } \tab [numeric] series of the part of Pn filling the production store (Ps) [mm/d]   \cr
    \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/d]                          \cr
    \emph{$Perc    } \tab [numeric] series of percolation (Perc) [mm/d]                                 \cr
    \emph{$PR      } \tab [numeric] series of Pr=Pn-Ps+Perc (Pr) [mm/d]                                 \cr
    \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                   \cr
    \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                   \cr
    \emph{$Rout    } \tab [numeric] series of routing store level (R1) [mm]                             \cr
    \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/d]         \cr
    \emph{$AExch1  } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d]    \cr
    \emph{$AExch2  } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d]    \cr
    \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (AExch1+AExch2) [mm/d] \cr
    \emph{$QR      } \tab [numeric] series of routing store outflow (Qr) [mm/d]                         \cr
    \emph{$QRExp   } \tab [numeric] series of exponential store outflow (QrExp) [mm/d]                  \cr
    \emph{$Exp     } \tab [numeric] series of exponential store level (negative) (R2) [mm]              \cr
    \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (Qd) [mm/d]           \cr
    \emph{$Qsim    } \tab [numeric] series of simulated discharge (Q) [mm/d]                            \cr
    \emph{$CemaNeigeLayers} \tab [list] CemaNeige outputs (1 element per layer)                         \cr
    \emph{$CemaNeigeLayers[[iLayer]]$Pliq        } \tab [numeric] series of liquid precip. [mm/d]                    \cr
    \emph{$CemaNeigeLayers[[iLayer]]$Psol        } \tab [numeric] series of solid precip. [mm/d]                     \cr
    \emph{$CemaNeigeLayers[[iLayer]]$SnowPack    } \tab [numeric] series of snow pack (snow water equivalent) [mm]   \cr
    \emph{$CemaNeigeLayers[[iLayer]]$ThermalState} \tab [numeric] series of snow pack thermal state [°C]             \cr
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
\emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr \emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr \emph{RunOptions$WarmUpQsim} \tab [numeric] series of simulated discharge (Q) on the warm-up period [mm/d] \cr \emph{RunOptions$Param } \tab [numeric] parameter set parameter set used by the model \cr \emph{$StateEnd} \tab [numeric] states at the end of the run: store & unit hydrographs levels [mm], CemaNeige states [mm & °C]. See \code{\link{CreateIniStates}} for more details \cr } Refer to the provided references or to the package source code for further details on these model outputs } \details{ The choice of the CemaNeige version is explained in \code{\link{CreateRunOptions}}. \cr For further details on the model, see the references section. \cr For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. \cr \cr See \code{\link{RunModel_GR6J}} to look at the diagram of the hydrological model. } \examples{ library(airGR) ## loading catchment data data(L0123002) ## preparation of the InputsModel object InputsModel <- CreateInputsModel(FUN_MOD = RunModel_CemaNeigeGR6J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, TempMean = BasinObs$T, ZInputs = median(BasinInfo$HypsoData), HypsoData = BasinInfo$HypsoData, NLayers = 5) ## run period selection Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1990-01-01"), which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1999-12-31")) ## --- original version of CemaNeige ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR6J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run) ## simulation Param <- c(X1 = 116.482, X2 = 0.500, X3 = 72.733, X4 = 1.224, X5 = 0.278, X6 = 30.333, CNX1 = 0.977, CNX2 = 2.776) OutputsModel <- RunModel_CemaNeigeGR6J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) ## results preview plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run]) ## efficiency criterion: Nash-Sutcliffe Efficiency InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run]) OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) ## --- version of CemaNeige with the Linear Hysteresis ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR6J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run, IsHyst = TRUE) ## simulation
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189
Param <- c(X1 = 116.482, X2 = 0.500, X3 = 72.733, X4 = 1.224, X5 = 0.278, X6 = 30.333, CNX1 = 0.977, CNX2 = 2.774, CNX3 = 100, CNX4 = 0.4) OutputsModel <- RunModel_CemaNeigeGR6J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) ## results preview plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run]) ## efficiency criterion: Nash-Sutcliffe Efficiency InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run]) OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) } \author{ Laurent Coron, Claude Michel, Charles Perrin, Raji Pushpalatha, Nicolas Le Moine, Audrey Valéry, Vazken Andréassian, Olivier Delaigue, Guillaume Thirel } \references{ Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T. and Andréassian, V. (2011). A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. Journal of Hydrology, 411(1-2), 66-76, \doi{10.1016/j.jhydrol.2011.09.034}. \cr\cr Riboust, P., Thirel, G., Le Moine, N. and Ribstein, P. (2019). Revisiting a simple degree-day model for integrating satellite data: Implementation of SWE-SCA hystereses. Journal of Hydrology and Hydromechanics, 67(1), 70–81, \doi{10.2478/johh-2018-0004}. \cr\cr Valéry, A., Andréassian, V. and Perrin, C. (2014). "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? Part 1 - Comparison of six snow accounting routines on 380 catchments. Journal of Hydrology, 517(0), 1166-1175, \doi{10.1016/j.jhydrol.2014.04.059}. \cr\cr Valéry, A., Andréassian, V. and Perrin, C. (2014). "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. Journal of Hydrology, 517(0), 1176-1187, \doi{10.1016/j.jhydrol.2014.04.058}. } \seealso{ \code{\link{RunModel_CemaNeige}}, \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_GR6J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. }