RunModel_GR4H.R 9.85 KiB
#*****************************************************************************************************************
#' Function which performs a single run for the GR4H hourly lumped model.
#'
#' For further details on the model, see the references section.
#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
#*****************************************************************************************************************
#' @title Run with the GR4H hydrological model
#' @author Laurent Coron (July 2014)
#' @seealso \code{\link{RunModel_GR4J}},
#'          \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}.
#' @example tests/example_RunModel_GR4H.R
#' @references
#'   Mathevet, T. (2005), 
#'       Quels modèles pluie-débit globaux pour le pas de temps horaire ? Développement empirique et comparaison de modèles sur un large échantillon de bassins versants, 
#'       PhD thesis (in French), ENGREF - Cemagref (Antony), Paris, France.
#' @useDynLib airgr
#' @encoding UTF-8
#' @export
#_FunctionInputs__________________________________________________________________________________________________
#' @param  InputsModel         [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details
#' @param  RunOptions          [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details
#' @param  Param               [numeric] vector of 4 parameters                                                             
#'                             \tabular{ll}{                                                                      
#'                             GR4H X1      \tab production store capacity [mm]                                \cr
#'                             GR4H X2      \tab groundwater exchange coefficient [mm/h]                       \cr
#'                             GR4H X3      \tab routing store capacity [mm]                                   \cr
#'                             GR4H X4      \tab unit hydrograph time constant [h]                             \cr
#'                             }                                                                                  
#_FunctionOutputs_________________________________________________________________________________________________
#' @return  [list] list containing the function outputs organised as follows:                                         
#'          \tabular{ll}{                                                                                         
#'          \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                    \cr
#'          \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/h]                 \cr
#'          \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/h]                          \cr
#'          \emph{$Prod    }          \tab [numeric] series of production store level (X(2)) [mm]                        \cr
#'          \emph{$AE      }          \tab [numeric] series of actual evapotranspiration [mm/h]                          \cr
#'          \emph{$Perc    }          \tab [numeric] series of percolation (PERC) [mm/h]                                 \cr
#'          \emph{$PR      }          \tab [numeric] series of PR=PN-PS+PERC [mm/h]                                      \cr
#'          \emph{$Q9      }          \tab [numeric] series of HU1 outflow (Q9) [mm/h]                                   \cr
#'          \emph{$Q1      }          \tab [numeric] series of HU2 outflow (Q1) [mm/h]                                   \cr
#'          \emph{$Rout    }          \tab [numeric] series of routing store level (X(1)) [mm]                           \cr
#'          \emph{$Exch    }          \tab [numeric] series of potential semi-exchange between catchments [mm/h]         \cr
#'          \emph{$AExch   }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/h]           \cr
#'          \emph{$QR      }          \tab [numeric] series of routing store outflow (QR) [mm/h]                         \cr
#'          \emph{$QD      }          \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/h]           \cr
#'          \emph{$Qsim    }          \tab [numeric] series of Qsim [mm/h]                                               \cr
#'          \emph{$StateEnd}          \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr
#'          }                                                                                                     
#'          (refer to the provided references or to the package source code for further details on these model outputs)
#*****************************************************************************************************************'
RunModel_GR4H <- function(InputsModel,RunOptions,Param){
    NParam <- 4;
    FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim");
    ##Arguments_check
      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); }  
      if(inherits(InputsModel,"hourly"     )==FALSE){ stop("InputsModel must be of class 'hourly'      \n"); return(NULL); }  
      if(inherits(InputsModel,"GR"         )==FALSE){ stop("InputsModel must be of class 'GR'          \n"); return(NULL); }  
      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("RunOptions must be of class 'RunOptions'   \n"); return(NULL); }  
      if(inherits(RunOptions,"GR"          )==FALSE){ stop("RunOptions must be of class 'GR'           \n"); return(NULL); }  
      if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); }
      if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); }
      Param <- as.double(Param);
    ##Input_data_preparation
      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
      IndPeriod1   <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
      LInputSeries <- as.integer(length(IndPeriod1))
      if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs)); 
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
} else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); } ##Use_of_IniResLevels if("IniResLevels" %in% names(RunOptions)){ RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm) RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm) } ##Call_fortan RESULTS <- .Fortran("frun_gr4h",PACKAGE="airgr", ##inputs LInputs=LInputSeries, ### length of input and output series InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h] InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h] NParam=as.integer(length(Param)), ### number of model parameter Param=Param, ### parameter set NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising StateStart=RunOptions$IniStates, ### state variables used when the model run starts NOutputs=as.integer(length(IndOutputs)), ### number of output series IndOutputs=IndOutputs, ### indices of output series ##outputs Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm] StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run ) RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; ##Output_data_preparation IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; ##OutputsModel_only if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); names(OutputsModel) <- FortranOutputs[IndOutputs]; } ##DatesR_and_OutputsModel_only if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) ); names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); } ##OutputsModel_and_SateEnd_only if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(RESULTS$StateEnd) ); names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); } ##DatesR_and_OutputsModel_and_SateEnd if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(RESULTS$StateEnd) ); names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); } ##End rm(RESULTS); class(OutputsModel) <- c("OutputsModel","hourly","GR"); return(OutputsModel); }