An error occurred while loading the file. Please try again.
-
Delaigue Olivier authored60219b28
#*****************************************************************************************************************
#' Function which performs a single run for the GR4H hourly lumped model.
#'
#' For further details on the model, see the references section.
#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
#*****************************************************************************************************************
#' @title Run with the GR4H hydrological model
#' @author Laurent Coron (July 2014)
#' @seealso \code{\link{RunModel_GR4J}},
#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}.
#' @example tests/example_RunModel_GR4H.R
#' @references
#' Mathevet, T. (2005),
#' Quels modèles pluie-débit globaux pour le pas de temps horaire ? Développement empirique et comparaison de modèles sur un large échantillon de bassins versants,
#' PhD thesis (in French), ENGREF - Cemagref (Antony), Paris, France.
#' @useDynLib airgr
#' @encoding UTF-8
#' @export
#_FunctionInputs__________________________________________________________________________________________________
#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details
#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details
#' @param Param [numeric] vector of 4 parameters
#' \tabular{ll}{
#' GR4H X1 \tab production store capacity [mm] \cr
#' GR4H X2 \tab groundwater exchange coefficient [mm/h] \cr
#' GR4H X3 \tab routing store capacity [mm] \cr
#' GR4H X4 \tab unit hydrograph time constant [h] \cr
#' }
#_FunctionOutputs_________________________________________________________________________________________________
#' @return [list] list containing the function outputs organised as follows:
#' \tabular{ll}{
#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr
#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h] \cr
#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/h] \cr
#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr
#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/h] \cr
#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/h] \cr
#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/h] \cr
#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/h] \cr
#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/h] \cr
#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr
#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/h] \cr
#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/h] \cr
#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/h] \cr
#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/h] \cr
#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/h] \cr
#' \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, HU1 levels, HU2 levels) [mm] \cr
#' }
#' (refer to the provided references or to the package source code for further details on these model outputs)
#*****************************************************************************************************************'
RunModel_GR4H <- function(InputsModel,RunOptions,Param){
NParam <- 4;
FortranOutputs <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim");
##Arguments_check
if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); }
if(inherits(InputsModel,"hourly" )==FALSE){ stop("InputsModel must be of class 'hourly' \n"); return(NULL); }
if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); }
if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); }
if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); }
if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); }
if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); }
Param <- as.double(Param);
##Input_data_preparation
if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
LInputSeries <- as.integer(length(IndPeriod1))
if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs));
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
} else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); }
##Use_of_IniResLevels
if("IniResLevels" %in% names(RunOptions)){
RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm)
RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm)
}
##Call_fortan
RESULTS <- .Fortran("frun_gr4h",PACKAGE="airgr",
##inputs
LInputs=LInputSeries, ### length of input and output series
InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h]
InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h]
NParam=as.integer(length(Param)), ### number of model parameter
Param=Param, ### parameter set
NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
StateStart=RunOptions$IniStates, ### state variables used when the model run starts
NOutputs=as.integer(length(IndOutputs)), ### number of output series
IndOutputs=IndOutputs, ### indices of output series
##outputs
Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm]
StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
##Output_data_preparation
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim;
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
##OutputsModel_only
if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
names(OutputsModel) <- FortranOutputs[IndOutputs]; }
##DatesR_and_OutputsModel_only
if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); }
##OutputsModel_and_SateEnd_only
if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); }
##DatesR_and_OutputsModel_and_SateEnd
if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); }
##End
rm(RESULTS);
class(OutputsModel) <- c("OutputsModel","hourly","GR");
return(OutputsModel);
}