RunModel_CemaNeigeGR6J.R 12.42 KiB
RunModel_CemaNeigeGR6J <- function(InputsModel, RunOptions, Param) {
  ## Initialization of variables
  IsHyst <- inherits(RunOptions, "hysteresis")
  NParam <- ifelse(test = IsHyst, yes = 10L, no = 8L)
  NParamCN <- NParam - 6L
  NStates <- 4L
  FortranOutputs <- .FortranOutputs(GR = "GR6J", isCN = TRUE)
  ## Arguments check
  if (!inherits(InputsModel, "InputsModel")) {
    stop("'InputsModel' must be of class 'InputsModel'")
  if (!inherits(InputsModel, "daily")) {
    stop("'InputsModel' must be of class 'daily'")
  if (!inherits(InputsModel, "GR")) {
    stop("'InputsModel' must be of class 'GR'")
  if (!inherits(InputsModel, "CemaNeige")) {
    stop("'InputsModel' must be of class 'CemaNeige'")
  if (!inherits(RunOptions, "RunOptions")) {
    stop("'RunOptions' must be of class 'RunOptions'")
  if (!inherits(RunOptions, "GR")) {
    stop("'RunOptions' must be of class 'GR'")
  if (!inherits(RunOptions, "CemaNeige")) {
    stop("'RunOptions' must be of class 'CemaNeige'")
  if (!is.vector(Param) | !is.numeric(Param)) {
    stop("'Param' must be a numeric vector")
  if (sum(!is.na(Param)) != NParam) {
    stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
  Param <- as.double(Param)
  Param_X1X3X6_threshold <- 1e-2
  Param_X4_threshold     <- 0.5
  if (Param[1L] < Param_X1X3X6_threshold) {
    warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
    Param[1L] <- Param_X1X3X6_threshold
  if (Param[3L] < Param_X1X3X6_threshold) {
    warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
    Param[3L] <- Param_X1X3X6_threshold
  if (Param[4L] < Param_X4_threshold) {
    warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
    Param[4L] <- Param_X4_threshold
  if (Param[6L] < Param_X1X3X6_threshold) {
    warning(sprintf("Param[6] (X6: coefficient for emptying exponential store [mm]) < %.2f\n X6 set to %.2f", Param_X1X3X6_threshold, Param_X1X3X6_threshold))
    Param[6L] <- Param_X1X3X6_threshold
  ## Input data preparation
  if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
    RunOptions$IndPeriod_WarmUp <- NULL
  IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run)
  LInputSeries   <- as.integer(length(IndPeriod1))
  IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries
  ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)]
  NParamMod      <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst)))
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
ParamMod <- Param[1:NParamMod] NLayers <- length(InputsModel$LayerPrecip) NStatesMod <- as.integer(length(RunOptions$IniStates) - NStates * NLayers) ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim ## CemaNeige________________________________________________________________________________ if (inherits(RunOptions, "CemaNeige")) { if ("all" %in% RunOptions$Outputs_Sim) { IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)) } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim) } CemaNeigeLayers <- list() CemaNeigeStateEnd <- NULL NameCemaNeigeLayers <- "CemaNeigeLayers" ## Call CemaNeige Fortran_________________________ for(iLayer in 1:NLayers) { if (!IsHyst) { StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)] } else { StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)] } RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR", ## inputs LInputs = LInputSeries, ### length of input and output series InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] NParam = as.integer(NParamCN), ### number of model parameters = 2 or 4 Param = as.double(ParamCemaNeige), ### parameter set NStates = as.integer(NStates), ### number of state variables used for model initialising = 4 StateStart = StateStartCemaNeige, ### state variables used when the model run starts IsHyst = as.integer(IsHyst), ### use of hysteresis NOutputs = as.integer(length(IndOutputsCemaNeige)), ### number of output series IndOutputs = IndOutputsCemaNeige, ### indices of output series ## outputs Outputs = matrix(as.double(-999.999), nrow = LInputSeries,ncol = length(IndOutputsCemaNeige)), ### output series [mm] StateEnd = rep(as.double(-999.999), as.integer(NStates)) ### state variables at the end of the model run ) RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA ## Data storage CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]) names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige] IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt") if (iLayer == 1) { CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers } if (iLayer >1 ) { CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers } if (ExportStateEnd) { CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd) } rm(RESULTS) } ### ENDFOR iLayer names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) } ### ENDIF RunSnowModule if (!inherits(RunOptions, "CemaNeige")) { CemaNeigeLayers <- list() CemaNeigeStateEnd <- NULL NameCemaNeigeLayers <- NULL CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1] }
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
## GR model______________________________________________________________________________________ if ("all" %in% RunOptions$Outputs_Sim) { IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)) } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim) } ## Use of IniResLevels if (!is.null(RunOptions$IniResLevels)) { RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm) RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm) RunOptions$IniStates[3] <- RunOptions$IniResLevels[3] ### exponential store level (mm) } ## Call GR model Fortan RESULTS <- .Fortran("frun_gr6j", PACKAGE = "airGR", ## inputs LInputs = LInputSeries, ### length of input and output series InputsPrecip = CatchMeltAndPliq, ### input series of total precipitation [mm/d] InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] NParam = NParamMod, ### number of model parameter Param = ParamMod, ### parameter set NStates = NStatesMod, ### number of state variables used for model initialising StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts NOutputs = as.integer(length(IndOutputsMod)), ### number of output series IndOutputs = IndOutputsMod, ### indices of output series ## outputs Outputs = matrix(as.double(-999.999), nrow = LInputSeries,ncol = length(IndOutputsMod)), ### output series [mm] StateEnd = rep(as.double(-999.999), NStatesMod) ### state variables at the end of the model run ) RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA if (ExportStateEnd) { RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ## remove negative values except for the ExpStore location idNStates <- seq_len(NStates*NLayers) %% NStates RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR6J, InputsModel = InputsModel, IsHyst = IsHyst, ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = RESULTS$StateEnd[3L], UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)], GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], verbose = FALSE) } if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) { RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod] == "Precip")] <- InputsModel$Precip[IndPeriod1] } ## Output data preparation ## OutputsModel only if (!ExportDatesR & !ExportStateEnd) { OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), list(CemaNeigeLayers)) names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) } ## DatesR and OutputsModel only if (!ExportDatesR & ExportStateEnd) { OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), list(CemaNeigeLayers)) names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers) } ## OutputsModel and SateEnd only if (!ExportDatesR & ExportStateEnd) { OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), list(CemaNeigeLayers),
211212213214215216217218219220221222223224225226227228229230231232233
list(RESULTS$StateEnd)) names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") } ## DatesR and OutputsModel and SateEnd if (ExportDatesR & ExportStateEnd) { OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]), list(CemaNeigeLayers), list(RESULTS$StateEnd)) names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd") } ## End rm(RESULTS) class(OutputsModel) <- c("OutputsModel", "daily", "GR", "CemaNeige") if (IsHyst) { class(OutputsModel) <- c(class(OutputsModel), "hysteresis") } return(OutputsModel) }