• Delaigue Olivier's avatar
    refactor(deprecated): remove some old deprecated · 952214d7
    Delaigue Olivier authored
    - 'Qobs` argument from 'CreateInputsCrit'
    - 'Ind_zeroes' argument from 'CreateInputsCrit'
    - 'verbose' argument from 'CreateInputsCrit'
    - 'FUN_CRIT' argument from 'ErrorCrit'
    - 'FUN_CRIT' argument from 'Calibration'
    - 'FUN_CRIT' argument from 'Calibration_Michel'
    Refs #81
    952214d7
Calibration_Michel.R 15.90 KiB
Calibration_Michel <- function(InputsModel,
                               RunOptions,
                               InputsCrit,
                               CalibOptions,
                               FUN_MOD,
                               FUN_TRANSFO = NULL,
                               verbose = TRUE,
                               ...) {
  FUN_MOD  <- match.fun(FUN_MOD)
  # Handling 'FUN_TRANSFO' from direct argument or provided by 'CaliOptions'
  if (!is.null(FUN_TRANSFO)) {
    FUN_TRANSFO <- match.fun(FUN_TRANSFO)
  } else if (!is.null(CalibOptions$FUN_TRANSFO)) {
    FUN_TRANSFO <- CalibOptions$FUN_TRANSFO
  } else {
    stop("'FUN_TRANSFO' is not provided neither as 'FUN_TRANSFO' argument or in 'CaliOptions' argument")
  ##_____Arguments_check_____________________________________________________________________
  if (!inherits(InputsModel, "InputsModel")) {
    stop("'InputsModel' must be of class 'InputsModel'")
  if (!inherits(RunOptions, "RunOptions")) {
    stop("'RunOptions' must be of class 'RunOptions'")
  if (!inherits(InputsCrit, "InputsCrit")) {
    stop("'InputsCrit' must be of class 'InputsCrit'")
  if (inherits(InputsCrit, "Multi")) {
    stop("'InputsCrit' must be of class 'Single' or 'Compo'")
  if (inherits(InputsCrit, "Single")) {
    listVarObs <- InputsCrit$VarObs
  if (inherits(InputsCrit, "Compo")) {
    listVarObs <- sapply(InputsCrit, FUN = "[[", "VarObs")
  if ("SCA" %in% listVarObs & !"Gratio" %in% RunOptions$Outputs_Cal) {
    warning("Missing 'Gratio' is automatically added to 'Output_Cal' in 'RunOptions' as it is necessary in the objective function for comparison with SCA")
    RunOptions$Outputs_Cal <- c(RunOptions$Outputs_Cal, "Gratio")
  if ("SWE" %in% listVarObs & !"SnowPack" %in% RunOptions$Outputs_Cal) {
    warning("Missing 'SnowPack' is automatically added to 'Output_Cal' in 'RunOptions' as it is necessary in the objective function for comparison with SWE")
    RunOptions$Outputs_Cal <- c(RunOptions$Outputs_Cal, "SnowPack")
  if (!inherits(CalibOptions, "CalibOptions")) {
    stop("'CalibOptions' must be of class 'CalibOptions'")
  if (!inherits(CalibOptions, "HBAN")) {
    stop("'CalibOptions' must be of class 'HBAN' if 'Calibration_Michel' is used")
  ##_variables_initialisation
  ParamFinalR <- NULL
  ParamFinalT <- NULL
  CritFinal   <- NULL
  NRuns <- 0
  NIter <- 0
  if ("StartParamDistrib" %in% names(CalibOptions)) {
    PrefilteringType <- 2
  } else {
    PrefilteringType <- 1
  if (PrefilteringType == 1) {
    NParam <- ncol(CalibOptions$StartParamList)
  if (PrefilteringType == 2) {
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
NParam <- ncol(CalibOptions$StartParamDistrib) } if (NParam > 20) { stop("Calibration_Michel can handle a maximum of 20 parameters") } HistParamR <- matrix(NA, nrow = 500 * NParam, ncol = NParam) HistParamT <- matrix(NA, nrow = 500 * NParam, ncol = NParam) HistCrit <- matrix(NA, nrow = 500 * NParam, ncol = 1) CritName <- NULL CritBestValue <- NULL Multiplier <- NULL CritOptim <- +1e100 ##_temporary_change_of_Outputs_Sim RunOptions$Outputs_Sim <- RunOptions$Outputs_Cal ### this reduces the size of the matrix exchange with fortran and therefore speeds the calibration ##_____Parameter_Grid_Screening____________________________________________________________ ##Definition_of_the_function_creating_all_possible_parameter_sets_from_different_values_for_each_parameter ProposeCandidatesGrid <- function(DistribParam) { NewCandidates <- expand.grid(lapply(seq_len(ncol(DistribParamR)), function(x) DistribParam[, x])) NewCandidates <- unique(NewCandidates) # to avoid duplicates when a parameter is set Output <- list(NewCandidates = NewCandidates) } ##Creation_of_new_candidates_______________________________________________ OptimParam <- is.na(CalibOptions$FixedParam) if (PrefilteringType == 1) { CandidatesParamR <- CalibOptions$StartParamList } if (PrefilteringType == 2) { DistribParamR <- CalibOptions$StartParamDistrib DistribParamR[, !OptimParam] <- NA CandidatesParamR <- ProposeCandidatesGrid(DistribParamR)$NewCandidates } ##Remplacement_of_non_optimised_values_____________________________________ CandidatesParamR <- apply(CandidatesParamR, 1, function(x) { x[!OptimParam] <- CalibOptions$FixedParam[!OptimParam] return(x) }) if (NParam > 1) { CandidatesParamR <- t(CandidatesParamR) } else { CandidatesParamR <- cbind(CandidatesParamR) } ##Loop_to_test_the_various_candidates______________________________________ iNewOptim <- 0 Ncandidates <- nrow(CandidatesParamR) if (verbose & Ncandidates > 1) { if (PrefilteringType == 1) { message("List-Screening in progress (", appendLF = FALSE) } if (PrefilteringType == 2) { message("Grid-Screening in progress (", appendLF = FALSE) } message("0%", appendLF = FALSE) } for (iNew in 1:nrow(CandidatesParamR)) { if (verbose & Ncandidates > 1) { for (k in c(2, 4, 6, 8)) { if (iNew == round(k / 10 * Ncandidates)) { message(" ", 10 * k, "%", appendLF = FALSE) } } } ##Model_run
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
Param <- CandidatesParamR[iNew, ] OutputsModel <- RunModel(InputsModel, RunOptions, Param, FUN_MOD = FUN_MOD, ...) ##Calibration_criterion_computation OutputsCrit <- ErrorCrit(InputsCrit, OutputsModel, verbose = FALSE) if (!is.na(OutputsCrit$CritValue)) { if (OutputsCrit$CritValue * OutputsCrit$Multiplier < CritOptim) { CritOptim <- OutputsCrit$CritValue * OutputsCrit$Multiplier iNewOptim <- iNew } } ##Storage_of_crit_info if (is.null(CritName) | is.null(CritBestValue) | is.null(Multiplier)) { CritName <- OutputsCrit$CritName CritBestValue <- OutputsCrit$CritBestValue Multiplier <- OutputsCrit$Multiplier } } if (verbose & Ncandidates > 1) { message(" 100%)\n", appendLF = FALSE) } ##End_of_first_step_Parameter_Screening____________________________________ ParamStartR <- CandidatesParamR[iNewOptim, ] if (!is.matrix(ParamStartR)) { ParamStartR <- matrix(ParamStartR, nrow = 1) } ParamStartT <- FUN_TRANSFO(ParamStartR, "RT") CritStart <- CritOptim NRuns <- NRuns + nrow(CandidatesParamR) if (verbose) { if (Ncandidates > 1) { message(sprintf("\t Screening completed (%s runs)", NRuns)) } if (Ncandidates == 1) { message("\t Starting point for steepest-descent local search:") } message("\t Param = ", paste(sprintf("%8.3f", ParamStartR), collapse = ", ")) message(sprintf("\t Crit. %-12s = %.4f", CritName, CritStart * Multiplier)) } ##Results_archiving________________________________________________________ HistParamR[1, ] <- ParamStartR HistParamT[1, ] <- ParamStartT HistCrit[1, ] <- CritStart ##_____Steepest_Descent_Local_Search_______________________________________________________ ##Definition_of_the_function_creating_new_parameter_sets_through_a_step_by_step_progression_procedure ProposeCandidatesLoc <- function(NewParamOptimT, OldParamOptimT, RangesT, OptimParam, Pace) { ##Format_checking if (nrow(NewParamOptimT) != 1 | nrow(OldParamOptimT) != 1) { stop("each input set must be a matrix of one single line") } if (ncol(NewParamOptimT)!=ncol(OldParamOptimT) | ncol(NewParamOptimT) != length(OptimParam)) { stop("each input set must have the same number of values") } ##Proposal_of_new_parameter_sets ###(local search providing 2 * NParam-1 new sets) NParam <- ncol(NewParamOptimT) VECT <- NULL for (I in 1:NParam) { ##We_check_that_the_current_parameter_should_indeed_be_optimised if (OptimParam[I]) { for (J in 1:2) { Sign <- 2 * J - 3 #Sign can be equal to -1 or +1 ##We_define_the_new_potential_candidate
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
Add <- TRUE PotentialCandidateT <- NewParamOptimT PotentialCandidateT[1, I] <- NewParamOptimT[I] + Sign * Pace ##If_we_exit_the_range_of_possible_values_we_go_back_on_the_boundary if (PotentialCandidateT[1, I] < RangesT[1, I] ) { PotentialCandidateT[1, I] <- RangesT[1, I] } if (PotentialCandidateT[1, I] > RangesT[2, I]) { PotentialCandidateT[1, I] <- RangesT[2, I] } ##We_check_the_set_is_not_outside_the_range_of_possible_values if (NewParamOptimT[I] == RangesT[1, I] & Sign < 0) { Add <- FALSE } if (NewParamOptimT[I] == RangesT[2, I] & Sign > 0) { Add <- FALSE } ##We_check_that_this_set_has_not_been_tested_during_the_last_iteration if (identical(PotentialCandidateT, OldParamOptimT)) { Add <- FALSE } ##We_add_the_candidate_to_our_list if (Add) { VECT <- c(VECT, PotentialCandidateT) } } } } Output <- NULL Output$NewCandidatesT <- matrix(VECT, ncol = NParam, byrow = TRUE) return(Output) } ##Initialisation_of_variables if (verbose) { message("Steepest-descent local search in progress") } Pace <- 0.64 PaceDiag <- rep(0, NParam) CLG <- 0.7^(1 / NParam) Compt <- 0 CritOptim <- CritStart ##Conversion_of_real_parameter_values RangesR <- CalibOptions$SearchRanges RangesT <- FUN_TRANSFO(RangesR, "RT") NewParamOptimT <- ParamStartT OldParamOptimT <- ParamStartT ##START_LOOP_ITER_________________________________________________________ for (ITER in 1:(100 * NParam)) { ##Exit_loop_when_Pace_becomes_too_small___________________________________ if (Pace < 0.01) { break } ##Creation_of_new_candidates______________________________________________ CandidatesParamT <- ProposeCandidatesLoc(NewParamOptimT, OldParamOptimT, RangesT, OptimParam, Pace)$NewCandidatesT CandidatesParamR <- FUN_TRANSFO(CandidatesParamT, "TR") ##Remplacement_of_non_optimised_values_____________________________________ CandidatesParamR <- apply(CandidatesParamR, 1, function(x) { x[!OptimParam] <- CalibOptions$FixedParam[!OptimParam] return(x) }) if (NParam > 1) { CandidatesParamR <- t(CandidatesParamR)
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
} else { CandidatesParamR <- cbind(CandidatesParamR) } ##Loop_to_test_the_various_candidates_____________________________________ iNewOptim <- 0 for (iNew in 1:nrow(CandidatesParamR)) { ##Model_run Param <- CandidatesParamR[iNew, ] OutputsModel <- RunModel(InputsModel, RunOptions, Param, FUN_MOD = FUN_MOD, ...) ##Calibration_criterion_computation OutputsCrit <- ErrorCrit(InputsCrit, OutputsModel, verbose = FALSE) if (!is.na(OutputsCrit$CritValue)) { if (OutputsCrit$CritValue * OutputsCrit$Multiplier < CritOptim) { CritOptim <- OutputsCrit$CritValue * OutputsCrit$Multiplier iNewOptim <- iNew } } } NRuns <- NRuns + nrow(CandidatesParamR) ##When_a_progress_has_been_achieved_______________________________________ if (iNewOptim != 0) { ##We_store_the_optimal_set OldParamOptimT <- NewParamOptimT NewParamOptimT <- matrix(CandidatesParamT[iNewOptim, 1:NParam], nrow = 1) Compt <- Compt + 1 ##When_necessary_we_increase_the_pace ### if_successive_progress_occur_in_a_row if (Compt > 2 * NParam) { Pace <- Pace * 2 Compt <- 0 } ##We_update_PaceDiag VectPace <- NewParamOptimT-OldParamOptimT for (iC in 1:NParam) { if (OptimParam[iC]) { PaceDiag[iC] <- CLG * PaceDiag[iC] + (1-CLG) * VectPace[iC] } } } else { ##When_no_progress_has_been_achieved_we_decrease_the_pace_________________ Pace <- Pace / 2 Compt <- 0 } ##Test_of_an_additional_candidate_using_diagonal_progress_________________ if (ITER > 4 * NParam) { NRuns <- NRuns + 1 iNewOptim <- 0 iNew <- 1 CandidatesParamT <- NewParamOptimT+PaceDiag if (!is.matrix(CandidatesParamT)) { CandidatesParamT <- matrix(CandidatesParamT, nrow = 1) } ##If_we_exit_the_range_of_possible_values_we_go_back_on_the_boundary for (iC in 1:NParam) { if (OptimParam[iC]) { if (CandidatesParamT[iNew, iC] < RangesT[1, iC]) { CandidatesParamT[iNew, iC] <- RangesT[1, iC] } if (CandidatesParamT[iNew, iC] > RangesT[2, iC]) { CandidatesParamT[iNew, iC] <- RangesT[2, iC] } } } CandidatesParamR <- FUN_TRANSFO(CandidatesParamT, "TR") ##Model_run
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
Param <- CandidatesParamR[iNew, ] OutputsModel <- RunModel(InputsModel, RunOptions, Param, FUN_MOD = FUN_MOD, ...) ##Calibration_criterion_computation OutputsCrit <- ErrorCrit(InputsCrit, OutputsModel, verbose = FALSE) if (OutputsCrit$CritValue * OutputsCrit$Multiplier < CritOptim) { CritOptim <- OutputsCrit$CritValue * OutputsCrit$Multiplier iNewOptim <- iNew } ##When_a_progress_has_been_achieved if (iNewOptim != 0) { OldParamOptimT <- NewParamOptimT NewParamOptimT <- matrix(CandidatesParamT[iNewOptim, 1:NParam], nrow = 1) } } ##Results_archiving_______________________________________________________ NewParamOptimR <- FUN_TRANSFO(NewParamOptimT, "TR") HistParamR[ITER+1, ] <- NewParamOptimR HistParamT[ITER+1, ] <- NewParamOptimT HistCrit[ITER+1, ] <- CritOptim ### if (verbose) { cat(paste("\t Iter ",formatC(ITER,format="d",width=3), " Crit ",formatC(CritOptim,format="f",digits=4), " Pace ",formatC(Pace,format="f",digits=4), "\n",sep=""))} } ##END_LOOP_ITER_________________________________________________________ ITER <- ITER - 1 ##Case_when_the_starting_parameter_set_remains_the_best_solution__________ if (CritOptim == CritStart & verbose) { message("\t No progress achieved") } ##End_of_Steepest_Descent_Local_Search____________________________________ ParamFinalR <- NewParamOptimR ParamFinalT <- NewParamOptimT CritFinal <- CritOptim NIter <- 1 + ITER if (verbose) { message(sprintf("\t Calibration completed (%s iterations, %s runs)", NIter, NRuns)) message("\t Param = ", paste(sprintf("%8.3f", ParamFinalR), collapse = ", ")) message(sprintf("\t Crit. %-12s = %.4f", CritName, CritFinal * Multiplier)) if (inherits(InputsCrit, "Compo")) { listweights <- OutputsCrit$CritCompo$MultiCritWeights listNameCrit <- OutputsCrit$CritCompo$MultiCritNames msgForm <- paste(sprintf("%.2f", listweights), listNameCrit, sep = " * ", collapse = ", ") msgForm <- unlist(strsplit(msgForm, split = ",")) msgFormSep <- rep(c(",", ",", ",\n\t\t "), times = ceiling(length(msgForm)/3))[1:length(msgForm)] msgForm <- paste(msgForm, msgFormSep, sep = "", collapse = "") msgForm <- gsub("\\,\\\n\\\t\\\t $|\\,$", "", msgForm) message("\tFormula: sum(", msgForm, ")") } } ##Results_archiving_______________________________________________________ HistParamR <- cbind(HistParamR[1:NIter, ]) colnames(HistParamR) <- paste0("Param", 1:NParam) HistParamT <- cbind(HistParamT[1:NIter, ]) colnames(HistParamT) <- paste0("Param", 1:NParam) HistCrit <- cbind(HistCrit[1:NIter, ]) ###colnames(HistCrit) <- paste("HistCrit") BoolCrit_Actual <- InputsCrit$BoolCrit BoolCrit_Actual[OutputsCrit$Ind_notcomputed] <- FALSE MatBoolCrit <- cbind(InputsCrit$BoolCrit, BoolCrit_Actual) colnames(MatBoolCrit) <- c("BoolCrit_Requested", "BoolCrit_Actual") ##_____Output______________________________________________________________________________
421422423424425426427428429430431432
OutputsCalib <- list(ParamFinalR = as.double(ParamFinalR), CritFinal = CritFinal * Multiplier, NIter = NIter, NRuns = NRuns, HistParamR = HistParamR, HistCrit = HistCrit * Multiplier, MatBoolCrit = MatBoolCrit, CritName = CritName, CritBestValue = CritBestValue) class(OutputsCalib) <- c("OutputsCalib", "HBAN") return(OutputsCalib) }