RunModel_CemaNeigeGR5J.R 10.67 KiB
RunModel_CemaNeigeGR5J <- function(InputsModel,RunOptions,Param){
    NParam <- 7;
    FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt", "Temp");
    FortranOutputsMod       <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim");
    ##Arguments_check
      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); }  
      if(inherits(InputsModel,"daily"      )==FALSE){ stop("InputsModel must be of class 'daily'       \n"); return(NULL); }  
      if(inherits(InputsModel,"GR"         )==FALSE){ stop("InputsModel must be of class 'GR'          \n"); return(NULL); }  
      if(inherits(InputsModel,"CemaNeige"  )==FALSE){ stop("InputsModel must be of class 'CemaNeige'   \n"); return(NULL); }  
      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("RunOptions must be of class 'RunOptions'   \n"); return(NULL); }  
      if(inherits(RunOptions,"GR"          )==FALSE){ stop("RunOptions must be of class 'GR'           \n"); return(NULL); }  
      if(inherits(RunOptions,"CemaNeige"   )==FALSE){ stop("RunOptions must be of class 'CemaNeige'    \n"); return(NULL); }  
      if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); }
      if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); }
      Param <- as.double(Param);
      Param_X1X3_threshold <- 1e-2
      if (Param[1L] < Param_X1X3_threshold) {
        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n New X1 value: %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
        Param[1L] <- Param_X1X3_threshold
      if (Param[3L] < Param_X1X3_threshold) {
        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n New X3 value: %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
        Param[3L] <- Param_X1X3_threshold
    ##Input_data_preparation
      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
      IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
      LInputSeries   <- as.integer(length(IndPeriod1))
      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
      ParamCemaNeige <- Param[(length(Param)-1):length(Param)];
      NParamMod      <- as.integer(length(Param)-2);
      ParamMod       <- Param[1:NParamMod];
      NLayers        <- length(InputsModel$LayerPrecip);
      NStatesMod     <- as.integer(length(RunOptions$IniStates)-2*NLayers);
      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
    ##SNOW_MODULE________________________________________________________________________________##
    if(RunOptions$RunSnowModule==TRUE){
      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige)); 
      } else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim);  }
      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
    ##Call_DLL_CemaNeige_________________________
      for(iLayer in 1:NLayers){
        StateStartCemaNeige <- RunOptions$IniStates[ (NStatesMod+2*(iLayer-1)+1):(NStatesMod+2*(iLayer-1)+2) ];
        RESULTS <- .Fortran("frun_CemaNeige",PACKAGE="airGR",
                        ##inputs
                            LInputs=LInputSeries,                                                          ### length of input and output series
                            InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                    ### input series of total precipitation [mm/d]
                            InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1],  ### input series of fraction of solid precipitation [0-1]
                            InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1],                        ### input series of air mean temperature [degC]
                            MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer],                        ### value of annual mean solid precip [mm/y]
                            NParam=as.integer(2),                                                          ### number of model parameter = 2
                            Param=ParamCemaNeige,                                                          ### parameter set
                            NStates=as.integer(2),                                                         ### number of state variables used for model initialising = 2
                            StateStart=StateStartCemaNeige,                                                ### state variables used when the model run starts
                            NOutputs=as.integer(length(IndOutputsCemaNeige)),                              ### number of output series
                            IndOutputs=IndOutputsCemaNeige,                                                ### indices of output series
                        ##outputs                                                               
                            Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)),  ### output series [mm]
                            StateEnd=rep(as.double(-999.999),as.integer(2))                                          ### state variables at the end of the model run (reservoir levels [mm] and HU)
        RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
        RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
##Data_storage CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]; IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } rm(RESULTS); } ###ENDFOR_iLayer names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep=""); } ###ENDIF_RunSnowModule if(RunOptions$RunSnowModule==FALSE){ CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } ##MODEL______________________________________________________________________________________## if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputsMod)); } else { IndOutputsMod <- which(FortranOutputsMod %in% RunOptions$Outputs_Sim); } ##Use_of_IniResLevels if("IniResLevels" %in% names(RunOptions)){ RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) } ##Call_fortan RESULTS <- .Fortran("frun_GR5J",PACKAGE="airGR", ##inputs LInputs=LInputSeries, ### length of input and output series InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] NParam=NParamMod, ### number of model parameter Param=ParamMod, ### parameter set NStates=NStatesMod, ### number of state variables used for model initialising StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts NOutputs=as.integer(length(IndOutputsMod)), ### number of output series IndOutputs=IndOutputsMod, ### indices of output series ##outputs Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] StateEnd=rep(as.double(-999.999),NStatesMod) ### state variables at the end of the model run ) RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; if(RunOptions$RunSnowModule & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputsMod[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } ##Output_data_preparation ##OutputsModel_only if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers) ); names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } ##DatesR_and_OutputsModel_only if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers) ); names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } ##OutputsModel_and_SateEnd_only if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers), list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } ##DatesR_and_OutputsModel_and_SateEnd if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
141142143144145146147148149150151152
list(CemaNeigeLayers), list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } ##End rm(RESULTS); class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); return(OutputsModel); }