RunModel_CemaNeigeGR5J.R 12.01 KiB
RunModel_CemaNeigeGR5J <- function(InputsModel,RunOptions,Param, IsHyst = FALSE){
  ## Arguments_check
  if (!is.logical(IsHyst) | length(IsHyst) != 1L) {
    stop("'IsHyst' must be a 'logical' of length 1")
  NParam <- ifelse(IsHyst, 9L, 7L)
  NStates <- 4L
  FortranOutputs <- .FortranOutputs(GR = "GR5J", isCN = TRUE)
    ##Arguments_check
      if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel'") }  
      if(inherits(InputsModel,"daily"      )==FALSE){ stop("InputsModel must be of class 'daily'      ") }  
      if(inherits(InputsModel,"GR"         )==FALSE){ stop("InputsModel must be of class 'GR'         ") }  
      if(inherits(InputsModel,"CemaNeige"  )==FALSE){ stop("InputsModel must be of class 'CemaNeige'  ") }  
      if(inherits(RunOptions,"RunOptions"  )==FALSE){ stop("RunOptions must be of class 'RunOptions'  ") }  
      if(inherits(RunOptions,"GR"          )==FALSE){ stop("RunOptions must be of class 'GR'          ") }  
      if(inherits(RunOptions,"CemaNeige"   )==FALSE){ stop("RunOptions must be of class 'CemaNeige'   ") }  
      if(!is.vector(Param) | !is.numeric(Param)){ stop("Param must be a numeric vector") }
      if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA",sep="")) }
      Param <- as.double(Param);
      Param_X1X3_threshold <- 1e-2
      Param_X4_threshold   <- 0.5
      if (Param[1L] < Param_X1X3_threshold) {
        warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
        Param[1L] <- Param_X1X3_threshold
      if (Param[3L] < Param_X1X3_threshold) {
        warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
        Param[3L] <- Param_X1X3_threshold
      if (Param[4L] < Param_X4_threshold) {
        warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
        Param[4L] <- Param_X4_threshold
    ##Input_data_preparation
      if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
      IndPeriod1     <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
      LInputSeries   <- as.integer(length(IndPeriod1))
      IndPeriod2     <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
      ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
      NParamMod      <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
      ParamMod       <- Param[1:NParamMod];
      NLayers        <- length(InputsModel$LayerPrecip);
      NStatesMod     <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
      ExportDatesR   <- "DatesR"   %in% RunOptions$Outputs_Sim;
      ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
    ##SNOW_MODULE________________________________________________________________________________##
    if(inherits(RunOptions,"CemaNeige")==TRUE){
      if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN)); 
      } else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim);  }
      CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
    ##Call_DLL_CemaNeige_________________________
      for(iLayer in 1:NLayers){
        StateStartCemaNeige <- RunOptions$IniStates[(7+20+40) + c(iLayer, iLayer+NLayers)]
        RESULTS <- .Fortran("frun_CemaNeige",PACKAGE="airGR",
                        ##inputs
                            LInputs=LInputSeries,                                                          ### length of input and output series
                            InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1],                    ### input series of total precipitation [mm/d]
                            InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1],  ### input series of fraction of solid precipitation [0-1]
                            InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1],                        ### input series of air mean temperature [degC]
                            MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer],                        ### value of annual mean solid precip [mm/y]
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
NParam=as.integer(NParam), ### number of model parameter = 2 Param=as.double(ParamCemaNeige), ### parameter set NStates=as.integer(NStates), ### number of state variables used for model initialising = 2 StateStart=StateStartCemaNeige, ### state variables used when the model run starts IsHyst = as.integer(IsHyst), ### use of hysteresis NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series IndOutputs=IndOutputsCemaNeige, ### indices of output series ##outputs Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] StateEnd=rep(as.double(-999.999),as.integer(NStates)) ### state variables at the end of the model run (reservoir levels [mm] and HU) ) RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; ##Data_storage CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]; IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } rm(RESULTS); } ###ENDFOR_iLayer names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers)) } ###ENDIF_RunSnowModule if(inherits(RunOptions,"CemaNeige")==FALSE){ CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } ##MODEL______________________________________________________________________________________## if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR)); } else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim); } ##Use_of_IniResLevels if(!is.null(RunOptions$IniResLevels)){ RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) } ##Call_fortan RESULTS <- .Fortran("frun_GR5J",PACKAGE="airGR", ##inputs LInputs=LInputSeries, ### length of input and output series InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] NParam=NParamMod, ### number of model parameter Param=ParamMod, ### parameter set NStates=NStatesMod, ### number of state variables used for model initialising StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts NOutputs=as.integer(length(IndOutputsMod)), ### number of output series IndOutputs=IndOutputsMod, ### indices of output series ##outputs Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] StateEnd=rep(as.double(-999.999),NStatesMod) ### state variables at the end of the model run ) RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; if (ExportStateEnd) { idNStates <- seq_len(NStates*NLayers) %% NStates RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR5J, InputsModel = InputsModel, ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL, UH1 = NULL, UH2 = RESULTS$StateEnd[(1:40)+(7+20)], GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]], eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]], GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]], GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]], verbose = FALSE) }
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180
if(inherits(RunOptions,"CemaNeige")==TRUE & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } ##Output_data_preparation ##OutputsModel_only if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers) ); names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } ##DatesR_and_OutputsModel_only if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers) ); names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); } ##OutputsModel_and_SateEnd_only if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers), list(RESULTS$StateEnd) ); names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } ##DatesR_and_OutputsModel_and_SateEnd if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers), list(RESULTS$StateEnd) ); names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } ##End rm(RESULTS); class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); if(IsHyst) { class(OutputsModel) <- c(class(OutputsModel), "hysteresis") } return(OutputsModel); }