Commit 2f9d46b3 authored by Delaigue Olivier's avatar Delaigue Olivier
Browse files

docs(vignette): fix the starting points used for the multi-start approach in...

docs(vignette): fix the starting points used for the multi-start approach in the param_optim vignette
- replace real space by transformed space
Refs #101
Showing with 9 additions and 1 deletion
+9 -1
...@@ -78,6 +78,7 @@ OptimGR4J <- function(ParamOptim) { ...@@ -78,6 +78,7 @@ OptimGR4J <- function(ParamOptim) {
In addition, we need to define the lower and upper bounds of the four **GR4J** parameters in the transformed parameter space: In addition, we need to define the lower and upper bounds of the four **GR4J** parameters in the transformed parameter space:
```{r, warning=FALSE, results='hide', eval=FALSE} ```{r, warning=FALSE, results='hide', eval=FALSE}
lowerGR4J <- rep(-9.99, times = 4) lowerGR4J <- rep(-9.99, times = 4)
upperGR4J <- rep(+9.99, times = 4) upperGR4J <- rep(+9.99, times = 4)
...@@ -86,6 +87,7 @@ upperGR4J <- rep(+9.99, times = 4) ...@@ -86,6 +87,7 @@ upperGR4J <- rep(+9.99, times = 4)
# Local optimization # Local optimization
We start with a local optimization strategy by using the PORT routines (using the `nlminb()` of the `stats` package) and by setting a starting point in the transformed parameter space: We start with a local optimization strategy by using the PORT routines (using the `nlminb()` of the `stats` package) and by setting a starting point in the transformed parameter space:
```{r, warning=FALSE, results='hide', eval=FALSE} ```{r, warning=FALSE, results='hide', eval=FALSE}
startGR4J <- c(4.1, 3.9, -0.9, -8.7) startGR4J <- c(4.1, 3.9, -0.9, -8.7)
optPORT <- stats::nlminb(start = startGR4J, optPORT <- stats::nlminb(start = startGR4J,
...@@ -93,13 +95,17 @@ optPORT <- stats::nlminb(start = startGR4J, ...@@ -93,13 +95,17 @@ optPORT <- stats::nlminb(start = startGR4J,
lower = lowerGR4J, upper = upperGR4J, lower = lowerGR4J, upper = upperGR4J,
control = list(trace = 1)) control = list(trace = 1))
``` ```
The RMSE value reaches a local minimum value after 35 iterations. The RMSE value reaches a local minimum value after 35 iterations.
We can also try a multi-start approach to test the consistency of the local optimization. We can also try a multi-start approach to test the consistency of the local optimization.
Here we use the same grid used for the filtering step of the Michel's calibration strategy (`Calibration_Michel()` function). Here we use the same grid used for the filtering step of the Michel's calibration strategy (`Calibration_Michel()` function).
For each starting point, a local optimization is performed. For each starting point, a local optimization is performed.
```{r, warning=FALSE, results='hide', eval=FALSE} ```{r, warning=FALSE, results='hide', eval=FALSE}
startGR4J <- expand.grid(data.frame(CalibOptions$StartParamDistrib)) StarttGR4JDistrib <- TransfoParam_GR4J(ParamIn = CalibOptions$StartParamDistrib,
Direction = "RT")
startGR4J <- expand.grid(data.frame(StarttGR4JDistrib))
optPORT_ <- function(x) { optPORT_ <- function(x) {
opt <- stats::nlminb(start = x, opt <- stats::nlminb(start = x,
objective = OptimGR4J, objective = OptimGR4J,
...@@ -110,6 +116,7 @@ listOptPORT <- apply(startGR4J, MARGIN = 1, FUN = optPORT_) ...@@ -110,6 +116,7 @@ listOptPORT <- apply(startGR4J, MARGIN = 1, FUN = optPORT_)
``` ```
We can then extract the best parameter sets and the value of the performance criteria: We can then extract the best parameter sets and the value of the performance criteria:
```{r, warning=FALSE, results='hide', eval=FALSE} ```{r, warning=FALSE, results='hide', eval=FALSE}
parPORT <- t(sapply(listOptPORT, function(x) x$par)) parPORT <- t(sapply(listOptPORT, function(x) x$par))
objPORT <- sapply(listOptPORT, function(x) x$objective) objPORT <- sapply(listOptPORT, function(x) x$objective)
...@@ -117,6 +124,7 @@ resPORT <- data.frame(parPORT, RMSE = objPORT) ...@@ -117,6 +124,7 @@ resPORT <- data.frame(parPORT, RMSE = objPORT)
``` ```
As can be seen below, the optimum performance criterion values (column *objective*) can differ from the global optimum value in many cases, resulting in various parameter sets. As can be seen below, the optimum performance criterion values (column *objective*) can differ from the global optimum value in many cases, resulting in various parameter sets.
```{r, warning=FALSE} ```{r, warning=FALSE}
summary(resPORT) summary(resPORT)
``` ```
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment