Commit af8c1ae3 authored by Dorchies David's avatar Dorchies David
Browse files

test: Remove the skip of vignette V02.1_param_optim in the tests

- Add purl=FALSE to the chunk refering to method hydroPSO which is failing du to a bug in current version of hydroPSO
- Add test comparing synthetic results on other methods
- Add comment on library hydroPSO concerning dependency issue on R 3.5

Fix #52
Showing with 20 additions and 8 deletions
+20 -8
......@@ -9,9 +9,21 @@ test_that("V01_get_started works", {
test_that("V02.1_param_optim works", {
skip_on_cran()
skip("hydroPSO not working presently")
rm(list = ls())
load(system.file("vignettesData/vignetteParamOptim.rda", package = "airGR"))
rda_resGLOB <- resGLOB
rda_resPORT <- resPORT
expect_true(RunVignetteChunks("V02.1_param_optim"))
expect_equal(summary(resGLOB), summary(rda_resGLOB), tolerance = 1E-7)
resGLOB <- data.frame(Algo = c("airGR", "PORT", "DE", "PSO", "MA-LS"),
round(rbind(
OutputsCalib$ParamFinalR ,
airGR::TransfoParam_GR4J(ParamIn = optPORT$par , Direction = "TR"),
airGR::TransfoParam_GR4J(ParamIn = as.numeric(optDE$optim$bestmem), Direction = "TR"),
rda_resGLOB[4, c("X1", "X2", "X3", "X4")],
airGR::TransfoParam_GR4J(ParamIn = optMALS$sol , Direction = "TR")),
digits = 3))
expect_equal(resGLOB[,-1], rda_resGLOB[,-1], tolerance = 1E-2) # High tolerance due to randomisation in optimisations
})
test_that("V02.2_param_mcmc works", {
......
......@@ -13,7 +13,7 @@ vignette: >
```{r, warning=FALSE, include=FALSE, fig.keep='none', results='hide'}
library(airGR)
library(DEoptim)
library(hydroPSO)
library(hydroPSO) # Needs R version >= 3.6 or latticeExtra <= 0.6-28 on R 3.5
library(Rmalschains)
# source("airGR.R")
set.seed(321)
......@@ -84,7 +84,7 @@ upperGR4J <- rep(+9.99, times = 4)
We start with a local optimization strategy by using the PORT routines (using the `nlminb()` of the `stats` package) and by setting a starting point in the transformed parameter space:
```{r, warning=FALSE, results='hide', eval=FALSE}
startGR4J <- c(4.1, 3.9, -0.9, -8.7)
optPORT <- stats::nlminb(start = startGR4J,
optPORT <- stats::nlminb(start = startGR4J,
objective = OptimGR4J,
lower = lowerGR4J, upper = upperGR4J,
control = list(trace = 1))
......@@ -97,7 +97,7 @@ For each starting point, a local optimization is performed.
```{r, warning=FALSE, results='hide', eval=FALSE}
startGR4J <- expand.grid(data.frame(CalibOptions$StartParamDistrib))
optPORT_ <- function(x) {
opt <- stats::nlminb(start = x,
opt <- stats::nlminb(start = x,
objective = OptimGR4J,
lower = lowerGR4J, upper = upperGR4J,
control = list(trace = 1))
......@@ -138,7 +138,7 @@ optDE <- DEoptim::DEoptim(fn = OptimGR4J,
## Particle Swarm
```{r, warning=FALSE, results='hide', message=FALSE, eval=FALSE}
```{r, warning=FALSE, results='hide', message=FALSE, eval=FALSE, purl=FALSE}
optPSO <- hydroPSO::hydroPSO(fn = OptimGR4J,
lower = lowerGR4J, upper = upperGR4J,
control = list(write2disk = FALSE, verbose = FALSE))
......@@ -147,7 +147,7 @@ optPSO <- hydroPSO::hydroPSO(fn = OptimGR4J,
## MA-LS-Chains
```{r, warning=FALSE, results='hide', eval=FALSE}
optMALS <- Rmalschains::malschains(fn = OptimGR4J,
lower = lowerGR4J, upper = upperGR4J,
lower = lowerGR4J, upper = upperGR4J,
maxEvals = 2000)
```
......@@ -155,8 +155,8 @@ optMALS <- Rmalschains::malschains(fn = OptimGR4J,
As it can be seen in the table below, the four additional optimization strategies tested lead to very close optima.
```{r, warning=FALSE, echo=FALSE, eval=FALSE}
resGLOB <- data.frame(Algo = c("airGR", "PORT", "DE", "PSO", "MA-LS"),
```{r, warning=FALSE, echo=FALSE, eval=FALSE, purl=FALSE}
resGLOB <- data.frame(Algo = c("airGR", "PORT", "DE", "PSO", "MA-LS"),
round(rbind(
OutputsCalib$ParamFinalR ,
airGR::TransfoParam_GR4J(ParamIn = optPORT$par , Direction = "TR"),
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment