En raison d'une défaillance matérielle, les jobs d'intégration continue peuvent échouer sans raison évidente sur les runners partagés. Les disques incriminés devraient être changés en fin de semaine. Merci de votre compréhension.

Commit e2017d93 authored by Delaigue Olivier's avatar Delaigue Olivier
Browse files

v1.6.9.24 docs(vignette): fix wrong URLs

parent 70a9f86b
Pipeline #19527 canceled with stages
Package: airGR
Type: Package
Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
Version: 1.6.9.23
Version: 1.6.9.24
Date: 2021-01-13
Authors@R: c(
person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
......
......@@ -2,7 +2,7 @@
### 1.6.9.23 Release Notes (2021-01-13)
### 1.6.9.24 Release Notes (2021-01-13)
#### New features
......
......@@ -10,7 +10,7 @@ vignette: >
# Introduction
**airGR** is a package that brings into the [**R software**](https://cran.r-project.org/) the hydrological modelling tools used and developed at the [Catchment Hydrology Research Group](https://webgr.inrae.fr/en/home/) at [INRAE (France)](https://www.inrae.fr/en), including the [**GR rainfall-runoff models**](https://webgr.inrae.fr/en/models/) and a snowmelt and accumulation model, [**CemaNeige**](https://webgr.inrae.fr/en/home/models/snow-model/). Each model core is coded in **Fortran** to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria calculation) are coded in **R**.
**airGR** is a package that brings into the [**R software**](https://cran.r-project.org/) the hydrological modelling tools used and developed at the [Catchment Hydrology Research Group](https://webgr.inrae.fr/en/home/) at [INRAE (France)](https://www.inrae.fr/en), including the [**GR rainfall-runoff models**](https://webgr.inrae.fr/en/models/) and a snowmelt and accumulation model, [**CemaNeige**](https://webgr.inrae.fr/en/models/snow-model/). Each model core is coded in **Fortran** to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria calculation) are coded in **R**.
The **airGR** package has been designed to fulfill two major requirements: to facilitate the use by non-expert users and to allow flexibility regarding the addition of external criteria, models or calibration algorithms. The names of the functions and their arguments were chosen to this end. **airGR** also contains basics plotting facilities.
......@@ -35,7 +35,7 @@ The models can be called within **airGR** using the following functions:
* `RunModel_CemaNeigeGR5J()`: combined use of **GR5J** and **CemaNeige**
* `RunModel_CemaNeigeGR6J()`: combined use of **GR6J** and **CemaNeige**
The [**GRP**](https://webgr.inrae.fr/en/home/models/hydrological-forecasting-model-grp/) forecasting model and the [**Otamin**](https://webgr.inrae.fr/en/home/software/otamin/) predictive uncertainty tool are not available in **airGR**.
The [**GRP**](https://webgr.inrae.fr/en/models/hydrological-forecasting-model-grp/) forecasting model and the [**Otamin**](https://webgr.inrae.fr/en/software/otamin/) predictive uncertainty tool are not available in **airGR**.
In this vignette, we show how to prepare and run a calibration and a simulation with airGR hydrological models.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment