Source

Target

Showing with 1931 additions and 2142 deletions
+1931 -2142
This diff is collapsed.
ErrorCrit <- function(InputsCrit,OutputsModel,FUN_CRIT, warnings = TRUE, verbose = TRUE){
return( FUN_CRIT(InputsCrit,OutputsModel, warnings = warnings, verbose = verbose) )
ErrorCrit <- function(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE) {
## ---------- Arguments check
if (!inherits(InputsCrit, "InputsCrit")) {
stop("InputsCrit must be of class 'InputsCrit'")
}
if (!inherits(OutputsModel, "OutputsModel")) {
stop("OutputsModel must be of class 'OutputsModel'")
}
## ---------- Criterion computation
## ----- Single criterion
if (inherits(InputsCrit, "Single")) {
FUN_CRIT <- match.fun(InputsCrit$FUN_CRIT)
OutputsCrit <- FUN_CRIT(InputsCrit = InputsCrit,
OutputsModel = OutputsModel,
warnings = warnings,
verbose = verbose)
}
## ----- Multiple criteria or Composite criterion
if (inherits(InputsCrit, "Multi") | inherits(InputsCrit, "Compo")) {
listOutputsCrit <- lapply(InputsCrit, FUN = function(iInputsCrit) {
FUN_CRIT <- match.fun(iInputsCrit$FUN_CRIT)
FUN_CRIT(InputsCrit = iInputsCrit,
OutputsModel = OutputsModel,
warnings = warnings,
verbose = verbose)
})
listValCrit <- sapply(listOutputsCrit, function(x) x[["CritValue"]])
listNameCrit <- sapply(listOutputsCrit, function(x) x[["CritName"]])
listweights <- unlist(lapply(InputsCrit, function(x) x[["Weights"]]))
listweights <- listweights / sum(listweights)
if (inherits(InputsCrit, "Compo")) {
CritValue <- sum(listValCrit * listweights)
OutputsCritCompo <- list(MultiCritValues = listValCrit,
MultiCritNames = listNameCrit,
MultiCritWeights = listweights)
OutputsCrit <- list(CritValue = CritValue,
CritName = "Composite",
CritBestValue = +1,
Multiplier = -1,
Ind_notcomputed = NULL,
CritCompo = OutputsCritCompo,
MultiCrit = listOutputsCrit)
class(OutputsCrit) <- c("Compo", "ErrorCrit")
if (verbose) {
message("------------------------------------\n")
message("Crit. Composite = ", sprintf("%.4f", CritValue))
msgForm <- paste(sprintf("%.2f", listweights), listNameCrit, sep = " * ", collapse = ", ")
msgForm <- unlist(strsplit(msgForm, split = ","))
msgFormSep <- rep(c(",", ",", ",\n\t\t "), times = ceiling(length(msgForm)/3))[1:length(msgForm)]
msgForm <- paste(msgForm, msgFormSep, sep = "", collapse = "")
msgForm <- gsub("\\,\\\n\\\t\\\t $|\\,$", "", msgForm)
message("\tFormula: sum(", msgForm, ")\n")
}
} else {
OutputsCrit <- listOutputsCrit
class(OutputsCrit) <- c("Multi", "ErrorCrit")
}
}
return(OutputsCrit)
}
ErrorCrit_KGE <- function(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE) {
##Arguments_check________________________________
if (!inherits(InputsCrit, "InputsCrit")) {
stop("InputsCrit must be of class 'InputsCrit' \n")
return(NULL)
}
if (!inherits(OutputsModel, "OutputsModel")) {
stop("OutputsModel must be of class 'OutputsModel' \n")
return(NULL)
}
##Initialisation_________________________________
CritName <- NA
if (InputsCrit$transfo == "") {
CritName <- "KGE[Q]"
}
if (InputsCrit$transfo == "sqrt") {
CritName <- "KGE[sqrt(Q)]"
}
if (InputsCrit$transfo == "log") {
CritName <- "KGE[log(Q)]"
}
if (InputsCrit$transfo == "inv") {
CritName <- "KGE[1/Q]"
}
if (InputsCrit$transfo == "sort") {
CritName <- "KGE[sort(Q)]"
}
CritValue <- NA
CritBestValue <- +1
Multiplier <- -1
### must be equal to -1 or +1 only
##Data_preparation_______________________________
VarObs <- InputsCrit$Qobs
VarObs[!InputsCrit$BoolCrit] <- NA
VarSim <- OutputsModel$Qsim
VarSim[!InputsCrit$BoolCrit] <- NA
##Data_transformation
if (InputsCrit$transfo %in% c("log", "inv") & is.null(InputsCrit$epsilon) & verbose) {
if (any(VarObs %in% 0)) {
warning("zeroes detected in Qobs: the corresponding time-steps will be exclude from the criteria computation if the epsilon agrument of 'CreateInputsCrit' = NULL")
}
if (any(VarSim %in% 0)) {
warning("zeroes detected in Qsim: the corresponding time-steps will be exclude from the criteria computation if the epsilon agrument of 'CreateInputsCrit' = NULL")
}
}
if ("epsilon" %in% names(InputsCrit) & !is.null(InputsCrit$epsilon)) {
VarObs <- VarObs + InputsCrit$epsilon
VarSim <- VarSim + InputsCrit$epsilon
}
if (InputsCrit$transfo == "sqrt") {
VarObs <- sqrt(VarObs)
VarSim <- sqrt(VarSim)
}
if (InputsCrit$transfo == "log") {
VarObs <- log(VarObs)
VarSim <- log(VarSim)
VarSim[VarSim < -1e100] <- NA
}
if (InputsCrit$transfo == "inv") {
VarObs <- 1 / VarObs
VarSim <- 1 / VarSim
VarSim[abs(VarSim) > 1e+100] <- NA
}
if (InputsCrit$transfo == "sort") {
VarSim[is.na(VarObs)] <- NA
VarSim <- sort(VarSim, na.last = TRUE)
VarObs <- sort(VarObs, na.last = TRUE)
InputsCrit$BoolCrit <- sort(InputsCrit$BoolCrit, decreasing = TRUE)
}
##TS_ignore
TS_ignore <- !is.finite(VarObs) | !is.finite(VarSim) | !InputsCrit$BoolCrit
Ind_TS_ignore <- which(TS_ignore)
if (length(Ind_TS_ignore) == 0) {
Ind_TS_ignore <- NULL
}
if (sum(!TS_ignore) == 0) {
OutputsCrit <- list(NA)
names(OutputsCrit) <- c("CritValue")
return(OutputsCrit)
}
if (sum(!TS_ignore) == 1) {
OutputsCrit <- list(NA)
names(OutputsCrit) <- c("CritValue")
return(OutputsCrit)
} ### to avoid a problem in standard deviation computation
if (inherits(OutputsModel, "hourly")) {
WarningTS <- 365
}
if (inherits(OutputsModel, "daily")) {
WarningTS <- 365
}
if (inherits(OutputsModel, "monthly")) {
WarningTS <- 12
}
if (inherits(OutputsModel, "yearly")) {
WarningTS <- 3
}
if (sum(!TS_ignore) < WarningTS & warnings) {
warning("\t criterion computed on less than ", WarningTS, " time-steps ")
}
##Other_variables_preparation
meanVarObs <- mean(VarObs[!TS_ignore])
meanVarSim <- mean(VarSim[!TS_ignore])
iCrit <- 0
SubCritPrint <- NULL
SubCritNames <- NULL
SubCritValues <- NULL
##SubErrorCrit_____KGE_rPearson__________________
iCrit <- iCrit + 1
SubCritPrint[iCrit] <- paste(CritName, " cor(sim, obs, \"pearson\") =", sep = "")
SubCritValues[iCrit] <- NA
SubCritNames[iCrit] <- "r"
Numer <- sum((VarObs[!TS_ignore] - meanVarObs) * (VarSim[!TS_ignore] - meanVarSim))
Deno1 <- sqrt(sum((VarObs[!TS_ignore] - meanVarObs) ^ 2))
Deno2 <- sqrt(sum((VarSim[!TS_ignore] - meanVarSim) ^ 2))
## Arguments check
if (!inherits(OutputsModel, "OutputsModel")) {
stop("'OutputsModel' must be of class 'OutputsModel'")
}
EC <- .ErrorCrit(InputsCrit = InputsCrit, Crit = "KGE", OutputsModel = OutputsModel, warnings = warnings)
CritValue <- NA
SubCritValues <- rep(NA, 3)
SubCritNames <- c("r", "alpha", "beta")
SubCritPrint <- rep(NA, 3)
if (EC$CritCompute) {
## Other variables preparation
meanVarObs <- mean(EC$VarObs[!EC$TS_ignore])
meanVarSim <- mean(EC$VarSim[!EC$TS_ignore])
## SubErrorCrit KGE rPearson
SubCritPrint[1L] <- paste0(EC$CritName, " cor(sim, obs, \"pearson\") =")
Numer <- sum((EC$VarObs[!EC$TS_ignore] - meanVarObs) * (EC$VarSim[!EC$TS_ignore] - meanVarSim))
Deno1 <- sqrt(sum((EC$VarObs[!EC$TS_ignore] - meanVarObs) ^ 2))
Deno2 <- sqrt(sum((EC$VarSim[!EC$TS_ignore] - meanVarSim) ^ 2))
if (Numer == 0) {
if (Deno1 == 0 & Deno2 == 0) {
Crit <- 1
......@@ -134,70 +31,65 @@ ErrorCrit_KGE <- function(InputsCrit, OutputsModel, warnings = TRUE, verbose = T
Crit <- 0
}
} else {
Crit <- Numer / (Deno1 * Deno2)
Crit <- Numer / (Deno1 * Deno2)
}
if (is.numeric(Crit) & is.finite(Crit)) {
SubCritValues[iCrit] <- Crit
}
##SubErrorCrit_____KGE_alpha_____________________
iCrit <- iCrit + 1
SubCritPrint[iCrit] <- paste(CritName, " sd(sim)/sd(obs) =", sep = "")
SubCritValues[iCrit] <- NA
SubCritNames[iCrit] <- "alpha"
Numer <- sd(VarSim[!TS_ignore])
Denom <- sd(VarObs[!TS_ignore])
SubCritValues[1L] <- Crit
}
## SubErrorCrit KGE alpha
SubCritPrint[2L] <- paste0(EC$CritName, " sd(sim)/sd(obs) =")
Numer <- sd(EC$VarSim[!EC$TS_ignore])
Denom <- sd(EC$VarObs[!EC$TS_ignore])
if (Numer == 0 & Denom == 0) {
Crit <- 1
} else {
Crit <- Numer / Denom
}
if (is.numeric(Crit) & is.finite(Crit)) {
SubCritValues[iCrit] <- Crit
SubCritValues[2L] <- Crit
}
##SubErrorCrit_____KGE_beta______________________
iCrit <- iCrit + 1
SubCritPrint[iCrit] <- paste(CritName, " mean(sim)/mean(obs) =", sep = "")
SubCritValues[iCrit] <- NA
SubCritNames[iCrit] <- "beta"
## SubErrorCrit KGE beta
SubCritPrint[3L] <- paste0(EC$CritName, " mean(sim)/mean(obs) =")
if (meanVarSim == 0 & meanVarObs == 0) {
Crit <- 1
} else {
Crit <- meanVarSim / meanVarObs
}
if (is.numeric(Crit) & is.finite(Crit)) {
SubCritValues[iCrit] <- Crit
SubCritValues[3L] <- Crit
}
##ErrorCrit______________________________________
## ErrorCrit
if (sum(is.na(SubCritValues)) == 0) {
CritValue <- (1 - sqrt((SubCritValues[1] - 1)^2 + (SubCritValues[2] - 1)^2 + (SubCritValues[3] - 1)^2))
CritValue <- (1 - sqrt((SubCritValues[1L] - 1)^2 + (SubCritValues[2L] - 1)^2 + (SubCritValues[3L] - 1)^2))
}
##Verbose______________________________________
## Verbose
if (verbose) {
message("Crit. ", CritName, " = ", sprintf("%.4f", CritValue))
message(sprintf("Crit. %s = %.4f", EC$CritName, CritValue))
message(paste("\tSubCrit.", SubCritPrint, sprintf("%.4f", SubCritValues), "\n", sep = " "))
}
##Output_________________________________________
OutputsCrit <- list(CritValue = CritValue,
CritName = CritName,
SubCritValues = SubCritValues,
SubCritNames = SubCritNames,
CritBestValue = CritBestValue,
Multiplier = Multiplier,
Ind_notcomputed = Ind_TS_ignore
)
return(OutputsCrit)
}
## Output
OutputsCrit <- list(CritValue = CritValue,
CritName = EC$CritName,
SubCritValues = SubCritValues,
SubCritNames = SubCritNames,
CritBestValue = EC$CritBestValue,
Multiplier = EC$Multiplier,
Ind_notcomputed = EC$Ind_TS_ignore)
class(OutputsCrit) <- c("KGE", "ErrorCrit")
return(OutputsCrit)
}
class(ErrorCrit_KGE) <- c("FUN_CRIT", class(ErrorCrit_KGE))
This diff is collapsed.
ErrorCrit_NSE <- function(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE) {
##Arguments_check________________________________
if (!inherits(InputsCrit, "InputsCrit")) {
stop("InputsCrit must be of class 'InputsCrit' \n")
return(NULL)
}
if (!inherits(OutputsModel, "OutputsModel")) {
stop("OutputsModel must be of class 'OutputsModel' \n")
return(NULL)
}
##Initialisation_________________________________
CritName <- NA
if (InputsCrit$transfo == "") {
CritName <- "NSE[Q]"
}
if (InputsCrit$transfo == "sqrt") {
CritName <- "NSE[sqrt(Q)]"
}
if (InputsCrit$transfo == "log") {
CritName <- "NSE[log(Q)]"
}
if (InputsCrit$transfo == "inv") {
CritName <- "NSE[1/Q]"
}
if (InputsCrit$transfo == "sort") {
CritName <- "NSE[sort(Q)]"
}
CritValue <- NA
CritBestValue <- +1
Multiplier <- -1
### must be equal to -1 or +1 only
##Data_preparation_______________________________
VarObs <- InputsCrit$Qobs
VarObs[!InputsCrit$BoolCrit] <- NA
VarSim <- OutputsModel$Qsim
VarSim[!InputsCrit$BoolCrit] <- NA
##Data_transformation
if (InputsCrit$transfo %in% c("log", "inv") & is.null(InputsCrit$epsilon) & verbose) {
if (any(VarObs %in% 0)) {
warning("zeroes detected in Qobs: the corresponding time-steps will be exclude from the criteria computation if the epsilon agrument of 'CreateInputsCrit' = NULL")
}
if (any(VarSim %in% 0)) {
warning("zeroes detected in Qsim: the corresponding time-steps will be exclude from the criteria computation if the epsilon agrument of 'CreateInputsCrit' = NULL")
}
}
if ("epsilon" %in% names(InputsCrit) & !is.null(InputsCrit$epsilon)) {
VarObs <- VarObs + InputsCrit$epsilon
VarSim <- VarSim + InputsCrit$epsilon
}
if (InputsCrit$transfo == "sqrt") {
VarObs <- sqrt(VarObs)
VarSim <- sqrt(VarSim)
}
if (InputsCrit$transfo == "log") {
VarObs <- log(VarObs)
VarSim <- log(VarSim)
VarSim[VarSim < -1e100] <- NA
}
if (InputsCrit$transfo == "inv") {
VarObs <- 1 / VarObs
VarSim <- 1 / VarSim
VarSim[abs(VarSim) > 1e+100] <- NA
}
if (InputsCrit$transfo == "sort") {
VarSim[is.na(VarObs)] <- NA
VarSim <- sort(VarSim, na.last = TRUE)
VarObs <- sort(VarObs, na.last = TRUE)
InputsCrit$BoolCrit <- sort(InputsCrit$BoolCrit, decreasing = TRUE)
}
##TS_ignore
TS_ignore <- !is.finite(VarObs) | !is.finite(VarSim) | !InputsCrit$BoolCrit
Ind_TS_ignore <- which(TS_ignore)
if (length(Ind_TS_ignore) == 0) {
Ind_TS_ignore <- NULL
}
if (sum(!TS_ignore) == 0) {
OutputsCrit <- list(NA)
names(OutputsCrit) <- c("CritValue")
return(OutputsCrit)
}
if (inherits(OutputsModel, "hourly")) {
WarningTS <- 365
}
if (inherits(OutputsModel, "daily")) {
WarningTS <- 365
}
if (inherits(OutputsModel, "monthly")) {
WarningTS <- 12
}
if (inherits(OutputsModel, "yearly")) {
WarningTS <- 3
}
if (sum(!TS_ignore) < WarningTS & warnings) {
warning("\t criterion computed on less than ", WarningTS, " time-steps")
}
##Other_variables_preparation
meanVarObs <- mean(VarObs[!TS_ignore])
meanVarSim <- mean(VarSim[!TS_ignore])
##ErrorCrit______________________________________
Emod <- sum((VarSim[!TS_ignore] - VarObs[!TS_ignore])^2)
Eref <- sum((VarObs[!TS_ignore] - mean(VarObs[!TS_ignore]))^2)
## Arguments check
if (!inherits(OutputsModel, "OutputsModel")) {
stop("'OutputsModel' must be of class 'OutputsModel'")
}
EC <- .ErrorCrit(InputsCrit = InputsCrit, Crit = "NSE", OutputsModel = OutputsModel, warnings = warnings)
CritValue <- NA
if (EC$CritCompute) {
## ErrorCrit
Emod <- sum((EC$VarSim[!EC$TS_ignore] - EC$VarObs[!EC$TS_ignore])^2)
Eref <- sum((EC$VarObs[!EC$TS_ignore] - mean(EC$VarObs[!EC$TS_ignore]))^2)
if (Emod == 0 & Eref == 0) {
Crit <- 0
} else {
......@@ -120,19 +22,24 @@ ErrorCrit_NSE <- function(InputsCrit, OutputsModel, warnings = TRUE, verbose = T
if (is.numeric(Crit) & is.finite(Crit)) {
CritValue <- Crit
}
##Verbose______________________________________
## Verbose
if (verbose) {
message("Crit. ", CritName, " = ", sprintf("%.4f", CritValue))
}
##Output_________________________________________
OutputsCrit <- list(CritValue = CritValue,
CritName = CritName,
CritBestValue = CritBestValue,
Multiplier = Multiplier,
Ind_notcomputed = Ind_TS_ignore)
return(OutputsCrit)
message(sprintf("Crit. %s = %.4f", EC$CritName, CritValue))
}
}
## Output
OutputsCrit <- list(CritValue = CritValue,
CritName = EC$CritName,
CritBestValue = EC$CritBestValue,
Multiplier = EC$Multiplier,
Ind_notcomputed = EC$Ind_TS_ignore)
class(OutputsCrit) <- c("NSE", "ErrorCrit")
return(OutputsCrit)
}
class(ErrorCrit_NSE) <- c("FUN_CRIT", class(ErrorCrit_NSE))
This diff is collapsed.
Imax <- function(InputsModel,
IndPeriod_Run,
TestedValues = seq(from = 0.1, to = 3, by = 0.1)) {
## ---------- check arguments
## InputsModel
if (!inherits(InputsModel, "InputsModel")) {
stop("'InputsModel' must be of class 'InputsModel'")
}
if (!inherits(InputsModel, "hourly")) {
stop("'InputsModel' must be of class 'hourly'")
}
## IndPeriod_Run
if (!is.vector(IndPeriod_Run)) {
stop("'IndPeriod_Run' must be a vector of numeric values")
}
if (!inherits(IndPeriod_Run, "integer")) {
stop("'IndPeriod_Run' must be of type integer")
}
if (!identical(as.integer(IndPeriod_Run), IndPeriod_Run[1]:IndPeriod_Run[length(IndPeriod_Run)])) {
stop("'IndPeriod_Run' must be a continuous sequence of integers")
}
## TestedValues
if (!(is.numeric(TestedValues))) {
stop("'TestedValues' must be 'numeric'")
}
## ---------- hourly inputs aggregation
## aggregate data at the daily time step
daily_data <- SeriesAggreg(InputsModel[IndPeriod_Run], Format = "%Y%m%d")
## ---------- calculate interception
## calculate total interception of daily GR models on the period
cum_daily <- sum(pmin(daily_data$Precip, daily_data$PotEvap))
if (anyNA(cum_daily)) {
stop("'IndPeriod_Run' must be set to select 24 hours by day")
}
## calculate total interception of the GR5H interception store on the period
## and compute difference with daily values
differences <- array(NA, c(length(TestedValues)))
for (Imax in TestedValues) {
C0 <- 0
cum_hourly <- 0
for (i in IndPeriod_Run) {
Ec <- min(InputsModel$PotEvap[i], InputsModel$Precip[i] + C0)
Pth <- max(0, InputsModel$Precip[i] - (Imax-C0) - Ec)
C0 <- C0 + InputsModel$Precip[i] - Ec - Pth
cum_hourly <- cum_hourly + Ec
}
differences[which(Imax == TestedValues)] <- abs(cum_hourly - cum_daily)
}
## return the Imax value that minimises the difference
return(TestedValues[which.min(differences)])
}
This diff is collapsed.
This diff is collapsed.
RunModel <- function(InputsModel, RunOptions, Param, FUN_MOD) {
return(FUN_MOD(InputsModel, RunOptions, Param))
RunModel <- function(InputsModel, RunOptions, Param, FUN_MOD, ...) {
FUN_MOD <- match.fun(FUN_MOD)
if (inherits(InputsModel, "SD") && !identical(FUN_MOD, RunModel_Lag)) {
# Lag model take one parameter at the beginning of the vector
iFirstParamRunOffModel <- 2
RunOptions$FeatFUN_MOD$NbParam <- RunOptions$FeatFUN_MOD$NbParam - 1
} else {
# All parameters
iFirstParamRunOffModel <- 1
}
OutputsModel <- FUN_MOD(InputsModel = InputsModel, RunOptions = RunOptions,
Param = Param[iFirstParamRunOffModel:length(Param)], ...)
if (inherits(InputsModel, "SD") && !identical(FUN_MOD, RunModel_Lag)) {
OutputsModel <- RunModel_Lag(InputsModel, RunOptions, Param[1], OutputsModel)
}
return(OutputsModel)
}
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.