An error occurred while loading the file. Please try again.
-
Dorchies David authored
Refs #111
dd7ef429
RunModel_CemaNeigeGR4H <- function(InputsModel, RunOptions, Param) {
## Initialization of variables
IsHyst <- inherits(RunOptions, "hysteresis")
NParamCN <- RunOptions$FeatFUN_MOD$NbParam - 4L
NStates <- 4L
.ArgumentsCheckGR(InputsModel, RunOptions, Param)
Param <- as.double(Param)
Param_X1X3_threshold <- 1e-2
Param_X4_threshold <- 0.5
if (Param[1L] < Param_X1X3_threshold) {
warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[1L] <- Param_X1X3_threshold
}
if (Param[3L] < Param_X1X3_threshold) {
warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[3L] <- Param_X1X3_threshold
}
if (Param[4L] < Param_X4_threshold) {
warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
Param[4L] <- Param_X4_threshold
}
## Input data preparation
if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
RunOptions$IndPeriod_WarmUp <- NULL
}
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
LInputSeries <- as.integer(length(IndPeriod1))
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)]
NParamMod <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst)))
ParamMod <- Param[1:NParamMod]
NLayers <- length(InputsModel$LayerPrecip)
NStatesMod <- as.integer(length(RunOptions$IniStates) - NStates * NLayers)
## Output data preparation
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
## CemaNeige________________________________________________________________________________
if (inherits(RunOptions, "CemaNeige")) {
if ("all" %in% RunOptions$Outputs_Sim) {
IndOutputsCemaNeige <- as.integer(1:length(RunOptions$FortranOutputs$CN))
} else {
IndOutputsCemaNeige <- which(RunOptions$FortranOutputs$CN %in% RunOptions$Outputs_Sim)
}
CemaNeigeLayers <- list()
CemaNeigeStateEnd <- NULL
NameCemaNeigeLayers <- "CemaNeigeLayers"
## Call CemaNeige Fortran_________________________
for (iLayer in 1:NLayers) {
if (!IsHyst) {
StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)]
} else {
StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
}
RESULTS <- .Fortran("frun_cemaneige", PACKAGE = "airGR",
## inputs
LInputs = LInputSeries, ### length of input and output series
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h]
InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC]
MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y]
NParam = as.integer(NParamCN), ### number of model parameters = 2 or 4
Param = as.double(ParamCemaNeige), ### parameter set
NStates = as.integer(NStates), ### number of state variables used for model initialising = 4
StateStart = StateStartCemaNeige, ### state variables used when the model run starts
IsHyst = as.integer(IsHyst), ### use of hysteresis
NOutputs = as.integer(length(IndOutputsCemaNeige)), ### number of output series
IndOutputs = IndOutputsCemaNeige, ### indices of output series
## outputs
Outputs = matrix(as.double(-99e9), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm, mm/h or degC]
StateEnd = rep(as.double(-99e9), as.integer(NStates)) ### state variables at the end of the model run
)
RESULTS$Outputs[RESULTS$Outputs <= -99e8] <- NA
RESULTS$StateEnd[RESULTS$StateEnd <= -99e8] <- NA
## Data storage
CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
names(CemaNeigeLayers[[iLayer]]) <- RunOptions$FortranOutputs$CN[IndOutputsCemaNeige]
IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt")
if (iLayer == 1) {
CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers
}
if (iLayer > 1) {
CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers
}
if (ExportStateEnd) {
CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd)
}
rm(RESULTS)
} ### ENDFOR iLayer
names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
} ### ENDIF RunSnowModule
if (!inherits(RunOptions, "CemaNeige")) {
CemaNeigeLayers <- list()
CemaNeigeStateEnd <- NULL
NameCemaNeigeLayers <- NULL
CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]
}
## GR model
if ("all" %in% RunOptions$Outputs_Sim) {
IndOutputsMod <- as.integer(1:length(RunOptions$FortranOutputs$GR))
} else {
IndOutputsMod <- which(RunOptions$FortranOutputs$GR %in% RunOptions$Outputs_Sim)
}
## Use of IniResLevels
if (!is.null(RunOptions$IniResLevels)) {
RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * ParamMod[1] ### production store level (mm)
RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * ParamMod[3] ### routing store level (mm)
}
## Call GR model Fortan
RESULTS <- .Fortran("frun_gr4h", PACKAGE = "airGR",
## inputs
LInputs = LInputSeries, ### length of input and output series
InputsPrecip = CatchMeltAndPliq, ### input series of total precipitation [mm/h]
InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h]
NParam = NParamMod, ### number of model parameter
Param = ParamMod, ### parameter set
NStates = NStatesMod, ### number of state variables used for model initialising
StateStart = RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
NOutputs = as.integer(length(IndOutputsMod)), ### number of output series
IndOutputs = IndOutputsMod, ### indices of output series
## outputs
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
Outputs = matrix(as.double(-99e9), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm or mm/h]
StateEnd = rep(as.double(-99e9), NStatesMod) ### state variables at the end of the model run
)
RESULTS$Outputs[RESULTS$Outputs <= -99e8] <- NA
RESULTS$StateEnd[RESULTS$StateEnd <= -99e8] <- NA
if (ExportStateEnd) {
RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
idNStates <- seq_len(NStates*NLayers) %% NStates
RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst,
ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
UH1 = RESULTS$StateEnd[(1:(20*24)) + 7],
UH2 = RESULTS$StateEnd[(1:(40*24)) + (7+20*24)],
GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]],
GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
verbose = FALSE)
}
if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) {
RESULTS$Outputs[, which(RunOptions$FortranOutputs$GR[IndOutputsMod] == "Precip")] <-
InputsModel$Precip[IndPeriod1]
}
## OutputsModel generation
.GetOutputsModelGR(InputsModel,
RunOptions,
RESULTS,
LInputSeries,
Param,
CemaNeigeLayers)
}