An error occurred while loading the file. Please try again.
-
fbourgin authored0f080d22
// Copyright (c) 2023, INRAE.
// Distributed under the terms of the GPL-3 Licence.
// The full licence is in the file LICENCE, distributed with this software.
#include <fstream>
#include <vector>
#include <tuple>
#include <array>
#include <string>
#include <unordered_map>
#include <gtest/gtest.h>
#include <xtl/xoptional.hpp>
#include <xtensor/xtensor.hpp>
#include <xtensor/xarray.hpp>
#include <xtensor/xview.hpp>
#include <xtensor/xmath.hpp>
#include <xtensor/xsort.hpp>
#include <xtensor/xmanipulation.hpp>
#include <xtensor/xcsv.hpp>
#include "evalhyd/evalp.hpp"
#ifndef EVALHYD_DATA_DIR
#error "need to define data directory"
#endif
using namespace xt::placeholders; // required for `_` to work
std::vector<std::string> all_metrics_p = {
"BS", "BSS", "BS_CRD", "BS_LBD", "REL_DIAG", "CRPS_FROM_BS",
"CRPS_FROM_ECDF",
"QS", "CRPS_FROM_QS",
"CONT_TBL", "POD", "POFD", "FAR", "CSI", "ROCSS",
"RANK_HIST", "DS", "AS",
"CR", "AW", "AWN", "WS",
"ES"
};
std::vector<std::string> all_metrics_p_ = {
"BS", "BSS", "BS_CRD", "BS_LBD", "REL_DIAG", "CRPS_FROM_BS",
"CRPS_FROM_ECDF",
"QS", "CRPS_FROM_QS",
"CONT_TBL", "POD", "POFD", "FAR", "CSI", "ROCSS",
"RANK_HIST", "DS", "AS",
"CR", "AW", "AWN", "WS",
"ES",
"CR_QLVL"
};
std::tuple<xt::xtensor<double, 1>, xt::xtensor<double, 2>> load_data_p()
{
// read in data
std::ifstream ifs;
ifs.open(EVALHYD_DATA_DIR "/data/q_obs.csv");
xt::xtensor<double, 1> observed = xt::squeeze(xt::load_csv<double>(ifs));
ifs.close();
ifs.open(EVALHYD_DATA_DIR "/data/q_prd.csv");
xt::xtensor<double, 2> predicted = xt::load_csv<double>(ifs);
ifs.close();
return std::make_tuple(observed, predicted);
}
std::unordered_map<std::string, xt::xarray<double>> load_expected_p()
{
// read in expected results
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
std::ifstream ifs;
std::unordered_map<std::string, xt::xarray<double>> expected;
for (const auto& metric : all_metrics_p_)
{
ifs.open(EVALHYD_DATA_DIR "/expected/evalp/" + metric + ".csv");
expected[metric] = xt::view(
xt::squeeze(xt::load_csv<double>(ifs)),
xt::newaxis(), xt::newaxis(), xt::newaxis(),
xt::newaxis(), xt::all()
);
ifs.close();
}
return expected;
}
TEST(ProbabilistTests, TestBrier)
{
// read in data
xt::xtensor<double, 1> observed;
xt::xtensor<double, 2> predicted;
std::tie(observed, predicted) = load_data_p();
// read in expected results
auto expected = load_expected_p();
// compute scores
xt::xtensor<double, 2> thresholds = {{690, 534, 445, NAN}};
std::vector<std::string> metrics = {"BS", "BSS", "BS_CRD", "BS_LBD", "REL_DIAG", "CRPS_FROM_BS"};
std::vector<xt::xarray<double>> results =
evalhyd::evalp(
// shape: (sites [1], time [t])
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
// shape: (sites [1], lead times [1], members [m], time [t])
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
metrics,
thresholds,
"high"
);
// check results
for (std::size_t m = 0; m < metrics.size(); m++)
{
if ( metrics[m] == "REL_DIAG" )
{
// /!\ stacked-up thresholds in CSV file because 7D metric,
// so need to resize array
expected[metrics[m]].resize(
{std::size_t {1}, std::size_t {1}, std::size_t {1},
std::size_t {1}, thresholds.shape(1),
predicted.shape(0) + 1, std::size_t {3}}
);
}
EXPECT_TRUE(xt::all(xt::isclose(
results[m], expected[metrics[m]], 1e-05, 1e-08, true
))) << "Failure for (" << metrics[m] << ")";
}
}
TEST(ProbabilistTests, TestCDF)
{
// read in data
xt::xtensor<double, 1> observed;
xt::xtensor<double, 2> predicted;
std::tie(observed, predicted) = load_data_p();
// read in expected results
auto expected = load_expected_p();
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
// compute scores
std::vector<std::string> metrics = {"CRPS_FROM_ECDF"};
std::vector<xt::xarray<double>> results =
evalhyd::evalp(
// shape: (sites [1], time [t])
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
// shape: (sites [1], lead times [1], members [m], time [t])
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
metrics
);
// check results
for (std::size_t m = 0; m < metrics.size(); m++)
{
EXPECT_TRUE(xt::all(xt::isclose(
results[m], expected[metrics[m]], 1e-05, 1e-08, true
))) << "Failure for (" << metrics[m] << ")";
}
}
TEST(ProbabilistTests, TestQuantiles)
{
// read in data
xt::xtensor<double, 1> observed;
xt::xtensor<double, 2> predicted;
std::tie(observed, predicted) = load_data_p();
// read in expected results
auto expected = load_expected_p();
// compute scores
std::vector<std::string> metrics = {"QS", "CRPS_FROM_QS"};
std::vector<xt::xarray<double>> results =
evalhyd::evalp(
// shape: (sites [1], time [t])
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
// shape: (sites [1], lead times [1], members [m], time [t])
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
metrics
);
// check results
for (std::size_t m = 0; m < metrics.size(); m++)
{
EXPECT_TRUE(xt::all(xt::isclose(
results[m], expected[metrics[m]], 1e-05, 1e-08, true
))) << "Failure for (" << metrics[m] << ")";
}
}
TEST(ProbabilistTests, TestContingency)
{
// read in data
xt::xtensor<double, 1> observed;
xt::xtensor<double, 2> predicted;
std::tie(observed, predicted) = load_data_p();
// read in expected results
auto expected = load_expected_p();
// compute scores
xt::xtensor<double, 2> thresholds = {{690, 534, 445, NAN}};
std::vector<std::string> metrics = {"CONT_TBL", "POD", "POFD", "FAR", "CSI", "ROCSS"};
std::vector<xt::xarray<double>> results =
evalhyd::evalp(
// shape: (sites [1], time [t])
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
// shape: (sites [1], lead times [1], members [m], time [t])
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
metrics,
thresholds,
"low"
);
// check results
for (std::size_t m = 0; m < metrics.size(); m++)
{
if (metrics[m] == "CONT_TBL")
{
// /!\ stacked-up thresholds and cells in CSV file because 7D metric,
// so need to resize array accordingly
expected[metrics[m]].resize(
{std::size_t {1}, std::size_t {1}, std::size_t {1}, std::size_t {1},
predicted.shape(0) + 1, thresholds.shape(1), std::size_t {4}}
);
}
EXPECT_TRUE(xt::all(xt::isclose(
results[m], expected[metrics[m]], 1e-05, 1e-08, true
))) << "Failure for (" << metrics[m] << ")";
}
}
TEST(ProbabilistTests, TestRanks)
{
// read in data
xt::xtensor<double, 1> observed;
xt::xtensor<double, 2> predicted;
std::tie(observed, predicted) = load_data_p();
// read in expected results
auto expected = load_expected_p();
std::vector<std::string> metrics = {"RANK_HIST", "DS", "AS"};
// compute scores
std::vector<xt::xarray<double>> results =
evalhyd::evalp(
// shape: (sites [1], time [t])
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
// shape: (sites [1], lead times [1], members [m], time [t])
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
{"RANK_HIST", "DS", "AS"},
xt::xtensor<double, 2>({}),
"high", // events
{}, // c_lvl
{}, // q_lvl
xt::xtensor<bool, 4>({}), // t_msk
xt::xtensor<std::array<char, 32>, 2>({}), // m_cdt
xtl::missing<const std::unordered_map<std::string, int>>(), // bootstrap
{}, // dts
7 // seed
);
// check results
for (std::size_t m = 0; m < metrics.size(); m++)
{
EXPECT_TRUE(xt::all(xt::isclose(
results[m], expected[metrics[m]], 1e-05, 1e-08, true
))) << "Failure for (" << metrics[m] << ")";
}
}
TEST(ProbabilistTests, TestIntervals)
{
// read in data
xt::xtensor<double, 1> observed;
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
xt::xtensor<double, 2> predicted;
std::tie(observed, predicted) = load_data_p();
// read in expected results
auto expected = load_expected_p();
// compute scores
std::vector<std::string> metrics = {"CR", "AW", "AWN", "WS"};
std::vector<xt::xarray<double>> results =
evalhyd::evalp(
// shape: (sites [1], time [t])
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
// shape: (sites [1], lead times [1], members [m], time [t])
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
{"CR", "AW", "AWN", "WS"},
xt::xtensor<double, 2>({}),
"", // events
{30., 80.} // c_lvl
);
// check results
for (std::size_t m = 0; m < metrics.size(); m++)
{
EXPECT_TRUE(xt::all(xt::isclose(
results[m], expected[metrics[m]], 1e-05, 1e-08, true
))) << "Failure for (" << metrics[m] << ")";
}
}
TEST(ProbabilistTests, TestIntervalsQLVL)
{
// read in data
xt::xtensor<double, 1> observed;
xt::xtensor<double, 2> predicted;
std::tie(observed, predicted) = load_data_p();
// read in expected results
auto expected = load_expected_p();
// compute scores
std::vector<std::string> metrics = {"CR"};
std::vector<std::string> metrics_ = {"CR_QLVL"};
std::vector<xt::xarray<double>> results =
evalhyd::evalp(
// shape: (sites [1], time [t])
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
// shape: (sites [1], lead times [1], members [m], time [t])
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::keep(0, 15, 30, 50), xt::all())),
metrics,
xt::xtensor<double, 2>({}),
"", // events
{50., 80.}, // c_lvl
{10., 25., 75., 90.} // q_lvl
);
// check results
for (std::size_t m = 0; m < metrics.size(); m++)
{
EXPECT_TRUE(xt::all(xt::isclose(
results[m], expected[metrics_[m]], 1e-05, 1e-08, true
))) << "Failure for (" << metrics[m] << ")";
}
}
TEST(ProbabilistTests, TestMultiVariate)
{
// read in data
xt::xtensor<double, 1> observed;
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
xt::xtensor<double, 2> predicted;
std::tie(observed, predicted) = load_data_p();
// read in expected results
auto expected = load_expected_p();
// compute scores
std::vector<std::string> metrics = {"ES"};
xt::xtensor<double, 2> obs = xt::repeat(
xt::view(observed, xt::newaxis(), xt::all()), 5, 0
);
xt::xtensor<double, 4> prd = xt::repeat(
xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()), 5, 0
);
std::vector<xt::xarray<double>> results =
evalhyd::evalp(
// shape: (sites [5], time [t])
obs,
// shape: (sites [5], lead times [1], members [m], time [t])
prd,
metrics
);
// check results
for (std::size_t m = 0; m < metrics.size(); m++)
{
EXPECT_TRUE(xt::all(xt::isclose(
results[m], expected[metrics[m]], 1e-05, 1e-08, true
))) << "Failure for (" << metrics[m] << ")";
}
}
TEST(ProbabilistTests, TestMasks)
{
// read in data
xt::xtensor<double, 1> observed;
xt::xtensor<double, 2> predicted;
std::tie(observed, predicted) = load_data_p();
// generate temporal subset by dropping 20 first time steps
xt::xtensor<bool, 4> masks =
xt::ones<bool>({std::size_t {1}, std::size_t {1}, std::size_t {1},
std::size_t {observed.size()}});
xt::view(masks, 0, xt::all(), 0, xt::range(0, 20)) = 0;
// compute scores using masks to subset whole record
xt::xtensor<double, 2> thresholds = {{690, 534, 445}};
std::vector<double> confidence_levels = {30., 80.};
std::vector<xt::xarray<double>> metrics_masked =
evalhyd::evalp(
// shape: (sites [1], time [t])
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
// shape: (sites [1], lead times [1], members [m], time [t])
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high",
confidence_levels,
{}, // q_lvl
// shape: (sites [1], lead times [1], subsets [1], time [t])
masks
);
// compute scores on pre-computed subset of whole record
std::vector<xt::xarray<double>> metrics_subset =
evalhyd::evalp(
// shape: (sites [1], time [t-20])
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
xt::eval(xt::view(observed, xt::newaxis(), xt::range(20, _))),
// shape: (sites [1], lead times [1], members [m], time [t-20])
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::range(20, _))),
all_metrics_p,
thresholds,
"high",
confidence_levels
);
// check results are identical
for (std::size_t m = 0; m < all_metrics_p.size(); m++)
{
// ---------------------------------------------------------------------
// /!\ skip ranks-based metrics because it contains a random process
// for which setting the seed will not work because the time series
// lengths are different between "masked" and "subset", which
// results in different tensor shapes, and hence in different
// random ranks for ties
if ((all_metrics_p[m] == "RANK_HIST")
|| (all_metrics_p[m] == "DS")
|| (all_metrics_p[m] == "AS"))
{
continue;
}
// ---------------------------------------------------------------------
EXPECT_TRUE(xt::all(xt::isclose(metrics_masked[m], metrics_subset[m], 1e-04, 1e-07, true)))
<< "Failure for (" << all_metrics_p[m] << ")";
}
}
TEST(ProbabilistTests, TestMaskingConditions)
{
xt::xtensor<double, 2> thresholds = {{690, 534, 445}};
std::vector<double> confidence_levels = {30., 80.};
// read in data
xt::xtensor<double, 1> observed_;
xt::xtensor<double, 2> predicted;
std::tie(observed_, predicted) = load_data_p();
// turn observed into 2D view (to simplify syntax later on)
auto observed = xt::view(observed_, xt::newaxis(), xt::all());
// generate dummy empty masks required to access next optional argument
xt::xtensor<bool, 4> masks;
// conditions on streamflow values _________________________________________
// compute scores using masking conditions on streamflow to subset whole record
xt::xtensor<std::array<char, 32>, 2> q_conditions = {
{std::array<char, 32> {"q_obs{<2000,>3000}"}}
};
std::vector<xt::xarray<double>> metrics_q_conditioned =
evalhyd::evalp(
xt::eval(observed),
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high",
confidence_levels,
{}, // q_lvl
masks,
q_conditions
);
// compute scores using "NaN-ed" time indices where conditions on streamflow met
std::vector<xt::xarray<double>> metrics_q_preconditioned =
evalhyd::evalp(
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
xt::eval(xt::where((observed < 2000) | (observed > 3000), observed, NAN)),
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high",
confidence_levels
);
// check results are identical
for (std::size_t m = 0; m < all_metrics_p.size(); m++)
{
// ---------------------------------------------------------------------
// /!\ skip ranks-based metrics because it contains a random process
// for which setting the seed will not work because the time series
// lengths are different between "conditioned" and "preconditioned",
// which results in different tensor shapes, and hence in different
// random ranks for ties
if ((all_metrics_p[m] == "RANK_HIST")
|| (all_metrics_p[m] == "DS")
|| (all_metrics_p[m] == "AS"))
{
continue;
}
// ---------------------------------------------------------------------
EXPECT_TRUE(
xt::all(xt::isclose(metrics_q_conditioned[m],
metrics_q_preconditioned[m],
1e-05, 1e-08, true))
) << "Failure for (" << all_metrics_p[m] << ")";
}
// conditions on streamflow statistics _____________________________________
// compute scores using masking conditions on streamflow to subset whole record
xt::xtensor<std::array<char, 32>, 2> q_conditions_ = {
{std::array<char, 32> {"q_prd_mean{>=median}"}}
};
auto q_prd_mean = xt::mean(predicted, {0}, xt::keep_dims);
double median = xt::median(q_prd_mean);
std::vector<xt::xarray<double>> metrics_q_conditioned_ =
evalhyd::evalp(
xt::eval(observed),
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high",
confidence_levels,
{}, // q_lvl
masks,
q_conditions_
);
// compute scores using "NaN-ed" time indices where conditions on streamflow met
std::vector<xt::xarray<double>> metrics_q_preconditioned_ =
evalhyd::evalp(
xt::eval(xt::where(q_prd_mean >= median, observed, NAN)),
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high",
confidence_levels
);
// check results are identical
for (std::size_t m = 0; m < all_metrics_p.size(); m++)
{
// ---------------------------------------------------------------------
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
// /!\ skip ranks-based metrics because it contains a random process
// for which setting the seed will not work because the time series
// lengths are different between "conditioned" and "preconditioned",
// which results in different tensor shapes, and hence in different
// random ranks for ties
if ((all_metrics_p[m] == "RANK_HIST")
|| (all_metrics_p[m] == "DS")
|| (all_metrics_p[m] == "AS"))
{
continue;
}
// ---------------------------------------------------------------------
EXPECT_TRUE(
xt::all(xt::isclose(metrics_q_conditioned_[m],
metrics_q_preconditioned_[m],
1e-05, 1e-08, true))
) << "Failure for (" << all_metrics_p[m] << ")";
}
// conditions on temporal indices __________________________________________
// compute scores using masking conditions on time indices to subset whole record
xt::xtensor<std::array<char, 32>, 2> t_conditions = {
{std::array<char, 32> {"t{0,1,2,3,4,5:97,97,98,99}"}}
};
std::vector<xt::xarray<double>> metrics_t_conditioned =
evalhyd::evalp(
xt::eval(observed),
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high",
confidence_levels,
{}, // q_lvl
masks,
t_conditions
);
// compute scores on already subset time series
std::vector<xt::xarray<double>> metrics_t_subset =
evalhyd::evalp(
xt::eval(xt::view(observed_, xt::newaxis(), xt::range(0, 100))),
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::range(0, 100))),
all_metrics_p,
thresholds,
"high",
confidence_levels
);
// check results are identical
for (std::size_t m = 0; m < all_metrics_p.size(); m++)
{
// ---------------------------------------------------------------------
// /!\ skip ranks-based metrics because it contains a random process
// for which setting the seed will not work because the time series
// lengths are different between "conditioned" and "subset",
// which results in different tensor shapes, and hence in different
// random ranks for ties
if ((all_metrics_p[m] == "RANK_HIST")
|| (all_metrics_p[m] == "DS")
|| (all_metrics_p[m] == "AS"))
{
continue;
}
// ---------------------------------------------------------------------
EXPECT_TRUE(
xt::all(xt::isclose(metrics_t_conditioned[m],
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
metrics_t_subset[m],
1e-05, 1e-08, true))
) << "Failure for (" << all_metrics_p[m] << ")";
}
}
TEST(ProbabilistTests, TestMissingData)
{
xt::xtensor<double, 2> thresholds = {{ 4., 5. }};
std::vector<double> confidence_levels = {30., 80.};
// compute metrics on series with NaN
xt::xtensor<double, 4> forecast_nan {{
// leadtime 1
{{ 5.3, 4.2, 5.7, 2.3, NAN },
{ 4.3, 4.2, 4.7, 4.3, NAN },
{ 5.3, 5.2, 5.7, 2.3, NAN }},
// leadtime 2
{{ NAN, 4.2, 5.7, 2.3, 3.1 },
{ NAN, 4.2, 4.7, 4.3, 3.3 },
{ NAN, 5.2, 5.7, 2.3, 3.9 }}
}};
xt::xtensor<double, 2> observed_nan
{{ 4.7, 4.3, NAN, 2.7, 4.1 }};
std::vector<xt::xarray<double>> metrics_nan =
evalhyd::evalp(
observed_nan,
forecast_nan,
all_metrics_p,
thresholds,
"high",
confidence_levels
);
// compute metrics on manually subset series (one leadtime at a time)
xt::xtensor<double, 4> forecast_pp1 {{
// leadtime 1
{{ 5.3, 4.2, 2.3 },
{ 4.3, 4.2, 4.3 },
{ 5.3, 5.2, 2.3 }},
}};
xt::xtensor<double, 2> observed_pp1
{{ 4.7, 4.3, 2.7 }};
std::vector<xt::xarray<double>> metrics_pp1 =
evalhyd::evalp(
observed_pp1,
forecast_pp1,
all_metrics_p,
thresholds,
"high",
confidence_levels
);
xt::xtensor<double, 4> forecast_pp2 {{
// leadtime 2
{{ 4.2, 2.3, 3.1 },
{ 4.2, 4.3, 3.3 },
{ 5.2, 2.3, 3.9 }}
}};
xt::xtensor<double, 2> observed_pp2
{{ 4.3, 2.7, 4.1 }};
std::vector<xt::xarray<double>> metrics_pp2 =
evalhyd::evalp(
observed_pp2,
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
forecast_pp2,
all_metrics_p,
thresholds,
"high",
confidence_levels
);
// check that numerical results are identical
for (std::size_t m = 0; m < all_metrics_p.size(); m++)
{
// for leadtime 1
EXPECT_TRUE(
xt::all(xt::isclose(xt::view(metrics_nan[m], xt::all(), 0),
xt::view(metrics_pp1[m], xt::all(), 0),
1e-05, 1e-08, true))
) << "Failure for (" << all_metrics_p[m] << ", " << "leadtime 1)";
// for leadtime 2
EXPECT_TRUE(
xt::all(xt::isclose(xt::view(metrics_nan[m], xt::all(), 1),
xt::view(metrics_pp2[m], xt::all(), 0),
1e-05, 1e-08, true))
) << "Failure for (" << all_metrics_p[m] << ", " << "leadtime 2)";
}
}
TEST(ProbabilistTests, TestBootstrap)
{
xt::xtensor<double, 2> thresholds = {{ 33.87, 55.67 }};
std::vector<double> confidence_levels = {30., 80.};
// read in data
std::ifstream ifs;
ifs.open(EVALHYD_DATA_DIR "/data/q_obs_1yr.csv");
xt::xtensor<std::string, 1> x_dts = xt::squeeze(xt::load_csv<std::string>(ifs, ',', 0, 1));
ifs.close();
std::vector<std::string> datetimes (x_dts.begin(), x_dts.end());
ifs.open(EVALHYD_DATA_DIR "/data/q_obs_1yr.csv");
xt::xtensor<double, 1> observed = xt::squeeze(xt::load_csv<double>(ifs, ',', 1));
ifs.close();
ifs.open(EVALHYD_DATA_DIR "/data/q_prd_1yr.csv");
xt::xtensor<double, 2> predicted = xt::load_csv<double>(ifs, ',', 1);
ifs.close();
// compute metrics via bootstrap
std::unordered_map<std::string, int> bootstrap =
{{"n_samples", 10}, {"len_sample", 3}, {"summary", 0}};
std::vector<xt::xarray<double>> metrics_bts =
evalhyd::evalp(
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high", // events
confidence_levels,
{}, // q_lvl
xt::xtensor<bool, 4>({}), // t_msk
xt::xtensor<std::array<char, 32>, 2>({}), // m_cdt
bootstrap,
datetimes
);
// compute metrics by repeating year of data 3 times
// (since there is only one year of data, and that the bootstrap works on
// one-year blocks, it can only select that given year to form samples,
// and the length of the sample corresponds to how many times this year
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
// is repeated in the sample, so that repeating the input data this many
// times should result in the same numerical results)
xt::xtensor<double, 1> observed_x3 =
xt::concatenate(xt::xtuple(observed, observed, observed), 0);
xt::xtensor<double, 2> predicted_x3 =
xt::concatenate(xt::xtuple(predicted, predicted, predicted), 1);
std::vector<xt::xarray<double>> metrics_rep =
evalhyd::evalp(
xt::eval(xt::view(observed_x3, xt::newaxis(), xt::all())),
xt::eval(xt::view(predicted_x3, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high",
confidence_levels
);
// check results are identical
for (std::size_t m = 0; m < all_metrics_p.size(); m++)
{
// ---------------------------------------------------------------------
// /!\ skip ranks-based metrics because it contains a random process
// for which setting the seed will not work because the time series
// lengths are different between "bts" and "rep", which
// results in different tensor shapes, and hence in different
// random ranks for ties
if ((all_metrics_p[m] == "RANK_HIST")
|| (all_metrics_p[m] == "DS")
|| (all_metrics_p[m] == "AS"))
{
continue;
}
// ---------------------------------------------------------------------
EXPECT_TRUE(
xt::all(xt::isclose(
metrics_bts[m], metrics_rep[m]
))
) << "Failure for (" << all_metrics_p[m] << ")";
}
}
TEST(ProbabilistTests, TestBootstrapSummary)
{
xt::xtensor<double, 2> thresholds = {{ 33.87, 55.67 }};
std::vector<double> confidence_levels = {30., 80.};
// read in data
std::ifstream ifs;
ifs.open(EVALHYD_DATA_DIR "/data/q_obs_1yr.csv");
xt::xtensor<std::string, 1> x_dts = xt::squeeze(xt::load_csv<std::string>(ifs, ',', 0, 1));
ifs.close();
std::vector<std::string> datetimes (x_dts.begin(), x_dts.end());
ifs.open(EVALHYD_DATA_DIR "/data/q_obs_1yr.csv");
xt::xtensor<double, 1> observed = xt::squeeze(xt::load_csv<double>(ifs, ',', 1));
ifs.close();
ifs.open(EVALHYD_DATA_DIR "/data/q_prd_1yr.csv");
xt::xtensor<double, 2> predicted = xt::load_csv<double>(ifs, ',', 1);
ifs.close();
// compute metrics via bootstrap
std::unordered_map<std::string, int> bootstrap_0 =
{{"n_samples", 10}, {"len_sample", 3}, {"summary", 0}};
std::vector<xt::xarray<double>> metrics_raw =
evalhyd::evalp(
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high", // events
confidence_levels,
{}, // q_lvl
xt::xtensor<bool, 4>({}), // t_msk
xt::xtensor<std::array<char, 32>, 2>({}), // m_cdt
bootstrap_0,
datetimes
);
// compute metrics via bootstrap with mean and standard deviation summary
std::unordered_map<std::string, int> bootstrap_1 =
{{"n_samples", 10}, {"len_sample", 3}, {"summary", 1}};
std::vector<xt::xarray<double>> metrics_mas =
evalhyd::evalp(
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high", // events
confidence_levels,
{}, // q_lvl
xt::xtensor<bool, 4>({}), // t_msk
xt::xtensor<std::array<char, 32>, 2>({}), // m_cdt
bootstrap_1,
datetimes
);
// check results are identical
for (std::size_t m = 0; m < all_metrics_p.size(); m++)
{
// ---------------------------------------------------------------------
// /!\ skip ranks-based metrics because it contains a random process
// for which setting the seed will not work because the time series
// lengths are different between "bts" and "rep", which
// results in different tensor shapes, and hence in different
// random ranks for ties
if ((all_metrics_p[m] == "RANK_HIST")
|| (all_metrics_p[m] == "DS")
|| (all_metrics_p[m] == "AS"))
{
continue;
}
// ---------------------------------------------------------------------
// mean
EXPECT_TRUE(
xt::all(xt::isclose(
xt::mean(metrics_raw[m], {3}),
xt::view(metrics_mas[m], xt::all(), xt::all(), xt::all(), 0)
))
) << "Failure for (" << all_metrics_p[m] << ") on mean";
// standard deviation
EXPECT_TRUE(
xt::all(xt::isclose(
xt::stddev(metrics_raw[m], {3}),
xt::view(metrics_mas[m], xt::all(), xt::all(), xt::all(), 1)
))
) << "Failure for (" << all_metrics_p[m] << ") on standard deviation";
}
// compute metrics via bootstrap with quantiles summary
std::unordered_map<std::string, int> bootstrap_2 =
{{"n_samples", 10}, {"len_sample", 3}, {"summary", 2}};
std::vector<xt::xarray<double>> metrics_qtl =
evalhyd::evalp(
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
xt::eval(xt::view(observed, xt::newaxis(), xt::all())),
xt::eval(xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all())),
all_metrics_p,
thresholds,
"high", // events
confidence_levels,
{}, // q_lvl
xt::xtensor<bool, 4>({}), // t_msk
xt::xtensor<std::array<char, 32>, 2>({}), // m_cdt
bootstrap_2,
datetimes
);
// check results are identical
for (std::size_t m = 0; m < all_metrics_p.size(); m++)
{
// ---------------------------------------------------------------------
// /!\ skip ranks-based metrics because it contains a random process
// for which setting the seed will not work because the time series
// lengths are different between "bts" and "rep", which
// results in different tensor shapes, and hence in different
// random ranks for ties
if ((all_metrics_p[m] == "RANK_HIST")
|| (all_metrics_p[m] == "DS")
|| (all_metrics_p[m] == "AS"))
{
continue;
}
// ---------------------------------------------------------------------
// quantiles
std::vector<double> quantiles = {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95};
std::size_t i = 0;
for (auto q : quantiles)
{
EXPECT_TRUE(
xt::all(xt::isclose(
xt::quantile(metrics_raw[m], {q}, 3),
xt::view(metrics_qtl[m], xt::all(), xt::all(), xt::all(), i)
))
) << "Failure for (" << all_metrics_p[m] << ") on quantile " << q;
i++;
}
}
}
TEST(ProbabilistTests, TestCompleteness)
{
std::vector<std::string> diags = {"completeness"};
// compute metrics on series with NaN
xt::xtensor<double, 4> prd = {{
// leadtime 1
{{ 5.3, NAN, 5.7, 2.3, 3.3, NAN },
{ 4.3, NAN, 4.7, 4.3, 3.4, NAN },
{ 5.3, NAN, 5.7, 2.3, 3.8, NAN }},
// leadtime 2
{{ NAN, 4.2, 5.7, 2.3, 3.1, 4.1 },
{ NAN, 4.2, 4.7, 4.3, 3.3, 2.8 },
{ NAN, 5.2, 5.7, 2.3, 3.9, 3.5 }}
}};
xt::xtensor<double, 2> obs =
{{ 4.7, 4.3, NAN, 2.7, 4.1, 5.0 }};
xt::xtensor<bool, 4> msk = {{
// leadtime 1
{{ true, true, true, false, true, true },
{ true, true, true, true, true, true }},
9819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018
// leadtime 2
{{ true, true, true, true, true, false },
{ true, true, true, true, true, true }},
}};
std::vector<xt::xarray<double>> results =
evalhyd::evalp(
obs,
prd,
std::vector<std::string> {}, // metrics
xt::xtensor<double, 2>({}), // thresholds
xtl::missing<const std::string>(), // events
{},
{}, // q_lvl
msk, // t_msk
xt::xtensor<std::array<char, 32>, 2>({}), // m_cdt
xtl::missing<const std::unordered_map<std::string, int>>(), // bootstrap
{}, // dts
xtl::missing<const int>(), // seed
diags
);
// check that numerical results are identical
xt::xtensor<double, 4> expected = {{
// leadtime 1
{{ 2. },
{ 3. }},
// leadtime 2
{{ 3. },
{ 4. }},
}};
EXPECT_TRUE(
xt::all(xt::isclose(results[0], expected, 1e-05, 1e-08, true))
);
}