An error occurred while loading the file. Please try again.
-
Thibault Hallouin authoreda0a54a07
#include <unordered_map>
#include <vector>
#include <array>
#include <stdexcept>
#include <xtensor/xexpression.hpp>
#include <xtensor/xarray.hpp>
#include <xtensor/xscalar.hpp>
#include "evalhyd/evald.hpp"
#include "utils.hpp"
#include "masks.hpp"
#include "maths.hpp"
#include "uncertainty.hpp"
#include "determinist/evaluator.hpp"
namespace eh = evalhyd;
namespace evalhyd
{
std::vector<xt::xarray<double>> evald(
const xt::xtensor<double, 2>& q_obs,
const xt::xtensor<double, 2>& q_prd,
const std::vector<std::string>& metrics,
const std::string& transform,
const double exponent,
double epsilon,
const xt::xtensor<bool, 2>& t_msk,
const xt::xtensor<std::array<char, 32>, 1>& m_cdt,
const std::unordered_map<std::string, int>& bootstrap,
const std::vector<std::string>& dts
)
{
// check that the metrics to be computed are valid
utils::check_metrics(
metrics,
{"RMSE", "NSE", "KGE", "KGEPRIME"}
);
// check that optional parameters are valid
eh::utils::check_bootstrap(bootstrap);
// check that data dimensions are compatible
// > time
if (q_obs.shape(1) != q_prd.shape(1))
throw std::runtime_error(
"observations and predictions feature different "
"temporal lengths"
);
if (t_msk.size() > 0)
if (q_obs.shape(1) != t_msk.shape(1))
throw std::runtime_error(
"observations and masks feature different "
"temporal lengths"
);
if (!dts.empty())
if (q_obs.shape(1) != dts.size())
throw std::runtime_error(
"observations and datetimes feature different "
"temporal lengths"
);
// > series
if (q_obs.shape(0) != 1)
throw std::runtime_error(
"observations contain more than one time series"
);
// retrieve dimensions
std::size_t n_tim = q_obs.shape(1);
std::size_t n_msk = t_msk.size() > 0 ? t_msk.shape(0) :
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
(m_cdt.size() > 0 ? m_cdt.shape(0) : 1);
// initialise a mask if none provided
// (corresponding to no temporal subset)
auto gen_msk = [&]() {
// if t_msk provided, it takes priority
if (t_msk.size() > 0)
return t_msk;
// else if m_cdt provided, use them to generate t_msk
else if (m_cdt.size() > 0)
{
xt::xtensor<bool, 2> c_msk = xt::zeros<bool>({n_msk, n_tim});
for (int m = 0; m < n_msk; m++)
xt::view(c_msk, m) =
eh::masks::generate_mask_from_conditions(
m_cdt[0], xt::view(q_obs, 0), q_prd
);
return c_msk;
}
// if neither t_msk nor m_cdt provided, generate dummy mask
else
return xt::xtensor<bool, 2>{xt::ones<bool>({std::size_t{1}, n_tim})};
};
auto msk = gen_msk();
// apply streamflow transformation if requested
auto q_transform = [&](const xt::xtensor<double, 2>& q)
{
if ( transform == "none" || (transform == "pow" && exponent == 1))
{
return q;
}
else if ( transform == "sqrt" )
{
return xt::eval(xt::sqrt(q));
}
else if ( transform == "inv" )
{
if ( epsilon == -9 )
// determine an epsilon value to avoid zero divide
epsilon = xt::mean(q_obs)() * 0.01;
return xt::eval(1. / (q + epsilon));
}
else if ( transform == "log" )
{
if ( epsilon == -9 )
// determine an epsilon value to avoid log zero
epsilon = xt::mean(q_obs)() * 0.01;
return xt::eval(xt::log(q + epsilon));
}
else if ( transform == "pow" )
{
if ( exponent < 0 )
{
if ( epsilon == -9 )
// determine an epsilon value to avoid zero divide
epsilon = xt::mean(q_obs)() * 0.01;
return xt::eval(xt::pow(q + epsilon, exponent));
}
else
{
return xt::eval(xt::pow(q, exponent));
}
}
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
else
{
throw std::runtime_error(
"invalid streamflow transformation: " + transform
);
}
};
auto obs = q_transform(q_obs);
auto prd = q_transform(q_prd);
// generate bootstrap experiment if requested
std::vector<xt::xkeep_slice<int>> exp;
auto n_samples = bootstrap.find("n_samples")->second;
auto len_sample = bootstrap.find("len_sample")->second;
if ((n_samples != -9) && (len_sample != -9))
{
if (dts.empty())
throw std::runtime_error(
"bootstrap requested but datetimes not provided"
);
exp = eh::uncertainty::bootstrap(
dts, n_samples, len_sample
);
}
else
{
// if no bootstrap requested, generate one sample
// containing all the time indices once
xt::xtensor<int, 1> all = xt::arange(n_tim);
exp.push_back(xt::keep(all));
}
// instantiate determinist evaluator
eh::determinist::Evaluator evaluator(obs, prd, msk, exp);
// declare maps for memoisation purposes
std::unordered_map<std::string, std::vector<std::string>> elt;
std::unordered_map<std::string, std::vector<std::string>> dep;
// register potentially recurring computation elt across metrics
elt["RMSE"] = {"quad_err"};
elt["NSE"] = {"mean_obs", "quad_obs", "quad_err"};
elt["KGE"] = {"mean_obs", "mean_prd", "quad_obs", "quad_prd",
"r_pearson", "alpha", "bias"};
elt["KGEPRIME"] = {"mean_obs", "mean_prd", "quad_obs", "quad_prd",
"r_pearson", "alpha", "bias"};
// register nested metrics (i.e. metric dependent on another metric)
// TODO
// determine required elt/dep to be pre-computed
std::vector<std::string> req_elt;
std::vector<std::string> req_dep;
eh::utils::find_requirements(metrics, elt, dep, req_elt, req_dep);
// pre-compute required elt
for ( const auto& element : req_elt )
{
if ( element == "mean_obs" )
evaluator.calc_mean_obs();
else if ( element == "mean_prd" )
evaluator.calc_mean_prd();
else if ( element == "quad_err" )
evaluator.calc_quad_err();
else if ( element == "quad_obs" )
evaluator.calc_quad_obs();
else if ( element == "quad_prd" )
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
evaluator.calc_quad_prd();
else if ( element == "r_pearson" )
evaluator.calc_r_pearson();
else if ( element == "alpha" )
evaluator.calc_alpha();
else if ( element == "bias" )
evaluator.calc_bias();
}
// pre-compute required dep
for ( const auto& dependency : req_dep )
{
// TODO
}
// retrieve or compute requested metrics
std::vector<xt::xarray<double>> r;
auto summary = bootstrap.find("summary")->second;
for ( const auto& metric : metrics )
{
if ( metric == "RMSE" )
{
if (std::find(req_dep.begin(), req_dep.end(), metric)
== req_dep.end())
evaluator.calc_RMSE();
r.emplace_back(eh::uncertainty::summarise(evaluator.RMSE, summary));
}
else if ( metric == "NSE" )
{
if (std::find(req_dep.begin(), req_dep.end(), metric)
== req_dep.end())
evaluator.calc_NSE();
r.emplace_back(eh::uncertainty::summarise(evaluator.NSE, summary));
}
else if ( metric == "KGE" )
{
if (std::find(req_dep.begin(), req_dep.end(), metric)
== req_dep.end())
evaluator.calc_KGE();
r.emplace_back(eh::uncertainty::summarise(evaluator.KGE, summary));
}
else if ( metric == "KGEPRIME" )
{
if (std::find(req_dep.begin(), req_dep.end(), metric)
== req_dep.end())
evaluator.calc_KGEPRIME();
r.emplace_back(eh::uncertainty::summarise(evaluator.KGEPRIME, summary));
}
}
return r;
}
}