An error occurred while loading the file. Please try again.
-
Thibault Hallouin authoredfd1d0485
#include <fstream>
#include <vector>
#include <array>
#include <gtest/gtest.h>
#include <xtensor/xtensor.hpp>
#include <xtensor/xmanipulation.hpp>
#include <xtensor/xcsv.hpp>
#include "evalhyd/evalp.hpp"
using namespace xt::placeholders; // required for `_` to work
TEST(ProbabilistTests, TestBrier)
{
// read in data
std::ifstream ifs;
ifs.open("./data/q_obs.csv");
xt::xtensor<double, 1> observed = xt::squeeze(xt::load_csv<int>(ifs));
ifs.close();
ifs.open("./data/q_prd.csv");
xt::xtensor<double, 2> predicted = xt::load_csv<double>(ifs);
ifs.close();
// compute scores
xt::xtensor<double, 2> thresholds = {{690, 534, 445, NAN}};
std::vector<xt::xarray<double>> metrics =
evalhyd::evalp(
// shape: (sites [1], time [t])
xt::view(observed, xt::newaxis(), xt::all()),
// shape: (sites [1], lead times [1], members [m], time [t])
xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()),
{"BS", "BSS", "BS_CRD", "BS_LBD"},
thresholds
);
// check results
// Brier scores
xt::xtensor<double, 4> bs =
{{{{0.10615136, 0.07395622, 0.08669186, NAN}}}};
EXPECT_TRUE(
xt::sum(xt::isclose(metrics[0], bs, 1e-05, 1e-08, true))
== xt::xscalar<double>(4)
);
// Brier skill scores
xt::xtensor<double, 4> bss =
{{{{0.5705594, 0.6661165, 0.5635126, NAN}}}};
EXPECT_TRUE(
xt::sum(xt::isclose(metrics[1], bss, 1e-05, 1e-08, true))
== xt::xscalar<double>(4)
);
// Brier calibration-refinement decompositions
xt::xtensor<double, 5> bs_crd =
{{{{{0.011411758, 0.1524456, 0.2471852},
{0.005532413, 0.1530793, 0.2215031},
{0.010139431, 0.1220601, 0.1986125},
{NAN, NAN, NAN}}}}};
EXPECT_TRUE(
xt::sum(xt::isclose(metrics[2], bs_crd, 1e-05, 1e-08, true))
== xt::xscalar<double>(12)
);
// Brier likelihood-base rate decompositions
xt::xtensor<double, 5> bs_lbd =
{{{{{0.012159881, 0.1506234, 0.2446149},
{0.008031746, 0.1473869, 0.2133114},
{0.017191279, 0.1048221, 0.1743227},
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
{NAN, NAN, NAN}}}}};
EXPECT_TRUE(
xt::sum(xt::isclose(metrics[3], bs_lbd, 1e-05, 1e-08, true))
== xt::xscalar<double>(12)
);
}
TEST(ProbabilistTests, TestQuantiles)
{
// read in data
std::ifstream ifs;
ifs.open("./data/q_obs.csv");
xt::xtensor<double, 1> observed = xt::squeeze(xt::load_csv<int>(ifs));
ifs.close();
ifs.open("./data/q_prd.csv");
xt::xtensor<double, 2> predicted = xt::load_csv<double>(ifs);
ifs.close();
// compute scores
std::vector<xt::xarray<double>> metrics =
evalhyd::evalp(
// shape: (sites [1], time [t])
xt::view(observed, xt::newaxis(), xt::all()),
// shape: (sites [1], lead times [1], members [m], time [t])
xt::view(predicted, xt::newaxis(), xt::newaxis(), xt::all(), xt::all()),
{"QS", "CRPS"}
);
// check results
// Quantile scores
xt::xtensor<double, 4> qs =
{{{{ 345.91578 , 345.069256, 343.129359, 340.709869, 338.281598,
335.973535, 333.555157, 330.332426, 327.333539, 324.325996,
321.190082, 318.175117, 315.122186, 311.97205 , 308.644942,
305.612169, 302.169552, 298.445956, 294.974648, 291.273807,
287.724586, 284.101905, 280.235592, 276.21865 , 272.501484,
268.652733, 264.740168, 260.8558 , 256.90329 , 252.926292,
248.931239, 244.986396, 240.662998, 236.328964, 232.089785,
227.387089, 222.976008, 218.699975, 214.099678, 209.67252 ,
205.189587, 200.395746, 195.2372 , 190.080139, 185.384244,
180.617858, 174.58323 , 169.154093, 163.110932, 156.274796,
147.575315}}}};
EXPECT_TRUE(xt::allclose(metrics[0], qs));
// Continuous ranked probability scores
xt::xtensor<double, 3> crps =
{{{252.956919}}};
EXPECT_TRUE(xt::allclose(metrics[1], crps));
}
TEST(ProbabilistTests, TestMasks)
{
// read in data
std::ifstream ifs;
ifs.open("./data/q_obs.csv");
xt::xtensor<double, 1> observed = xt::squeeze(xt::load_csv<int>(ifs));
ifs.close();
ifs.open("./data/q_prd.csv");
xt::xtensor<double, 2> predicted = xt::load_csv<double>(ifs);
ifs.close();
// generate temporal subset by dropping 20 first time steps
xt::xtensor<double, 4> masks =
xt::ones<bool>({std::size_t {1}, std::size_t {1}, std::size_t {1},
std::size_t {observed.size()}});
xt::view(masks, 0, xt::all(), 0, xt::range(0, 20)) = 0;
// compute scores using masks to subset whole record