Commit 37b0a696 authored by de Lavenne Alban's avatar de Lavenne Alban
Browse files

refactor: useless argument for cv.glmnet

No related merge requests found
Showing with 3 additions and 3 deletions
+3 -3
......@@ -53,7 +53,7 @@
#' @importFrom stats lm predict complete.cases cor as.formula
#' @export
rsimilarity <- function(Rn, predictors, newpredictors, FUN=invRMSE, power=0.5, symmetrize=mean, model="glmnet",
args_glmnet=list(alpha=0.5, s="lambda.min", lower.limits=0), verbose = TRUE, seed=NULL){
args_glmnet=list(s="lambda.min", lower.limits=0), verbose = TRUE, seed=NULL){
# Checks inputs
if(inherits(Rn, "units")) Rn <- units::drop_units(Rn)
......@@ -112,7 +112,7 @@ rsimilarity <- function(Rn, predictors, newpredictors, FUN=invRMSE, power=0.5, s
if(is.character(args_glmnet[["s"]])){s <- glm_similarity[[args_glmnet[["s"]]]]}else{s <- args_glmnet[["s"]]}
similarity <- as.vector(stats::predict(glm_similarity, newx=as.matrix(newpredictors), s=s))
coef <- as.matrix(coef(glm_similarity, s=s))[-1,]
# Infinite similarity of predictors leads to infinite predicted similarity (instead of NA)
# Infinite similarity of predictors leads to infinite predicted similarity (instead of NA)
inf_similarity <- apply(newpredictors, MARGIN=1, FUN = function(x) any(is.infinite(x)))
if(any(inf_similarity)) similarity[inf_similarity] <- Inf
# Compute R2 manually
......@@ -139,7 +139,7 @@ rsimilarity <- function(Rn, predictors, newpredictors, FUN=invRMSE, power=0.5, s
coef <- as.matrix(coef(lm_similarity))[-1,]
r2 <- summary(lm_similarity)$r.squared
pvalue <- summary(lm_similarity)$coefficients[-1, "Pr(>|t|)"]
# Infinite similarity of predictors leads to infinite predicted similarity (instead of NA)
# Infinite similarity of predictors leads to infinite predicted similarity (instead of NA)
inf_similarity <- apply(newpredictors, MARGIN=1, FUN = function(x) any(is.infinite(x)))
if(any(inf_similarity)) similarity[inf_similarity] <- Inf
# Indicators of the distribution of the weights
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment