Commit 496e7387 by patrick.lambert

with new fomula and bug fixed

parent 7a7823f5
 ... ... @@ -34,6 +34,9 @@ ft <- fp_text(shading.color='#EFEFEF', bold = TRUE) It corresponds in Rougier et al 2012 to the basin weight between a departure $j_1$ to destination basin $j_2$: $$w_{j_1\rightarrow j_2} = \frac {1} {1 + e ^{\alpha_0 + \alpha_1 \cdot {\frac {( D_{j_1\rightarrow j_2} - \mu_D)} {\sigma_D} } } }$$ $$w_{j_1\rightarrow j_2} = \frac {1} {1 + e ^{\alpha_0 + \frac {\alpha_1} {\sigma_D} \cdot {( D_{j_1\rightarrow j_2} - \mu_D)} }}$$ $$w_{j_1\rightarrow j_2} = \frac {1} {1 + e ^{\alpha_0 - \frac {\alpha_1} {\sigma_D} \cdot \mu_D + \frac {\alpha_1} {\sigma_D} \cdot {( D_{j_1\rightarrow j_2} )} }}$$ where $D_{j_1\rightarrow j_2}$ is the distance between the departure and destination basins, $\alpha_0$ and $\alpha_1$ are the kernel parameters, $\mu_D$ and $\sigma_D$ are the mean and standard deviation between inter basin distances. The objective is to find the kernel parameters which correspond to knowledge expert, i.e. 50 % of strayers settle before 19 km, 95% before 111 km. ... ... @@ -91,7 +94,7 @@ RougierReferenceDistance = sapply(dataTarget$pct, function(target) uniroot(funct  With parameter values defined in Rougier et al 2015, r scales::percent(dataTarget$pct[1]) of strayers settle before r RougierReferenceDistance[1] km, and respectively r scales::percent(dataTarget$pct[2]) before r RougierReferenceDistance[1] km. With parameter values defined in Rougier et al 2015, r scales::percent(dataTarget$pct[1]) of strayers settle before r RougierReferenceDistance[1] km, and respectively r scales::percent(dataTarget\$pct[2]) before r RougierReferenceDistance[2]` km. # Parameters corresponding to the reference distance defined by US experts ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!