otbTrainVectorRegression.cxx 3.67 KiB
/*
 * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES)
 * This file is part of Orfeo Toolbox
 *     https://www.orfeo-toolbox.org/
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *     http://www.apache.org/licenses/LICENSE-2.0
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
#include "otbTrainVectorBase.h"
namespace otb
namespace Wrapper
class TrainVectorRegression : public TrainVectorBase<float, float>
public:
  typedef TrainVectorRegression Self;
  typedef TrainVectorBase<float, float> Superclass;
  typedef itk::SmartPointer<Self> Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;
  itkNewMacro( Self )
  itkTypeMacro( Self, Superclass )
  typedef Superclass::SampleType SampleType;
  typedef Superclass::ListSampleType ListSampleType;
  typedef Superclass::TargetListSampleType TargetListSampleType;
protected:
  TrainVectorRegression()
    this->m_RegressionFlag = true;
  void DoInit() override
    SetName( "TrainVectorRegression" );
    SetDescription( "Train a regression algorithm based on geometries with "
      "list of features to consider and a predictor." );
    SetDocName( "Train Vector Regression" );
    SetDocLongDescription( "This application trains a regression algorithm based on "
      "a predictor geometries and a list of features to consider for "
      "regression.\nThis application is based on LibSVM, OpenCV Machine "
      "Learning (2.3.1 and later), and Shark ML The output of this application "
      "is a text model file, whose format corresponds to the ML model type "
      "chosen. There is no image nor vector data output.");
    SetDocLimitations("");
    SetDocAuthors( "OTB Team" );
    SetDocSeeAlso( " " );
    SetOfficialDocLink();
    Superclass::DoInit();
    AddParameter( ParameterType_Float , "io.mse" , "Mean Square Error" );
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
SetParameterDescription( "io.mse" , "Mean square error computed with the validation predictors" ); SetParameterRole( "io.mse" , Role_Output ); this->MandatoryOff( "io.mse" ); } void DoUpdateParameters() override { Superclass::DoUpdateParameters(); } double ComputeMSE(TargetListSampleType* list1, TargetListSampleType* list2) { assert(list1->Size() == list2->Size()); double mse = 0.; for (TargetListSampleType::InstanceIdentifier i=0; i<list1->Size() ; ++i) { auto elem1 = list1->GetMeasurementVector(i); auto elem2 = list2->GetMeasurementVector(i); mse += (elem1[0] - elem2[0]) * (elem1[0] - elem2[0]); } mse /= static_cast<double>(list1->Size()); return mse; } void DoExecute() override { m_FeaturesInfo.SetClassFieldNames( GetChoiceNames( "cfield" ), GetSelectedItems( "cfield" ) ); if( m_FeaturesInfo.m_SelectedCFieldIdx.empty() && GetClassifierCategory() == Supervised ) { otbAppLogFATAL( << "No field has been selected for data labelling!" ); } Superclass::DoExecute(); otbAppLogINFO("Computing training performances"); auto mse = ComputeMSE(m_ClassificationSamplesWithLabel.labeledListSample.GetPointer(), m_PredictedList.GetPointer() ); otbAppLogINFO("Mean Square Error = "<<mse); this->SetParameterFloat("io.mse",mse); } private: }; } } OTB_APPLICATION_EXPORT( otb::Wrapper::TrainVectorRegression )