An error occurred while loading the file. Please try again.
-
Cédric Traizet authored196c5fe9
/*
* Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbTrainVectorBase.h"
namespace otb
{
namespace Wrapper
{
class TrainVectorRegression : public TrainVectorBase<float, float>
{
public:
typedef TrainVectorRegression Self;
typedef TrainVectorBase<float, float> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
itkNewMacro( Self )
itkTypeMacro( Self, Superclass )
typedef Superclass::SampleType SampleType;
typedef Superclass::ListSampleType ListSampleType;
typedef Superclass::TargetListSampleType TargetListSampleType;
protected:
TrainVectorRegression()
{
this->m_RegressionFlag = true;
}
void DoInit() override
{
SetName( "TrainVectorRegression" );
SetDescription( "Train a regression algorithm based on geometries with "
"list of features to consider and a predictor." );
SetDocName( "Train Vector Regression" );
SetDocLongDescription( "This application trains a regression algorithm based on "
"a predictor geometries and a list of features to consider for "
"regression.\nThis application is based on LibSVM, OpenCV Machine "
"Learning (2.3.1 and later), and Shark ML The output of this application "
"is a text model file, whose format corresponds to the ML model type "
"chosen. There is no image nor vector data output.");
SetDocLimitations("");
SetDocAuthors( "OTB Team" );
SetDocSeeAlso( " " );
SetOfficialDocLink();
Superclass::DoInit();
AddParameter( ParameterType_Float , "io.mse" , "Mean Square Error" );
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
SetParameterDescription( "io.mse" ,
"Mean square error computed with the validation predictors" );
SetParameterRole( "io.mse" , Role_Output );
this->MandatoryOff( "io.mse" );
}
void DoUpdateParameters() override
{
Superclass::DoUpdateParameters();
}
double ComputeMSE(TargetListSampleType* list1, TargetListSampleType* list2)
{
assert(list1->Size() == list2->Size());
double mse = 0.;
for (TargetListSampleType::InstanceIdentifier i=0; i<list1->Size() ; ++i)
{
auto elem1 = list1->GetMeasurementVector(i);
auto elem2 = list2->GetMeasurementVector(i);
mse += (elem1[0] - elem2[0]) * (elem1[0] - elem2[0]);
}
mse /= static_cast<double>(list1->Size());
return mse;
}
void DoExecute() override
{
m_FeaturesInfo.SetClassFieldNames( GetChoiceNames( "cfield" ), GetSelectedItems( "cfield" ) );
if( m_FeaturesInfo.m_SelectedCFieldIdx.empty() && GetClassifierCategory() == Supervised )
{
otbAppLogFATAL( << "No field has been selected for data labelling!" );
}
Superclass::DoExecute();
otbAppLogINFO("Computing training performances");
auto mse = ComputeMSE(m_ClassificationSamplesWithLabel.labeledListSample.GetPointer(), m_PredictedList.GetPointer() );
otbAppLogINFO("Mean Square Error = "<<mse);
this->SetParameterFloat("io.mse",mse);
}
private:
};
}
}
OTB_APPLICATION_EXPORT( otb::Wrapper::TrainVectorRegression )