An error occurred while loading the file. Please try again.
-
Manuel Grizonnet authored
OTB followed since the beginning the ITK convention and use .txx extension for all template classes. Nevertheless, some development tools do not recognize .txx file extension. Other tool like GitHub can't do in-browser syntax highlighting for txx files I think. The root problem is the use of the txx which should be changed to hxx (or hpp). In 2011, after an in-depth discussion near April 20, 2011 on the Insight-Developers mailing list, ITK rename all txx files to hxx (and event prevent the push of .txx files with a pre-commit hook). It happens is major release v4. You can find some arguments in the discussion about the change and also in other projects related to ITK which applied the same modification, see for instance VXL: https://github.com/vxl/vxl/issues/209 This commit apply now the same modification for OTB. I understand that it will change some habit for developers and don't bring new features but I think that in general it is better to stay align with ITK guidelines. In my opinion, it always facilitate the use of OTB and ITK together if we share when we can the same code architecture, directory organization, naming conventions...
3a1fd1fc
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbTrainKNN_txx
#define otbTrainKNN_txx
#include "otbLearningApplicationBase.h"
#include "otbKNearestNeighborsMachineLearningModel.h"
namespace otb
{
namespace Wrapper
{
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitKNNParams()
{
AddChoice("classifier.knn", "KNN classifier");
SetParameterDescription("classifier.knn", "This group of parameters allows setting KNN classifier parameters. "
"See complete documentation here \\url{http://docs.opencv.org/modules/ml/doc/k_nearest_neighbors.html}.");
//K parameter
AddParameter(ParameterType_Int, "classifier.knn.k", "Number of Neighbors");
SetParameterInt("classifier.knn.k",32);
SetParameterDescription("classifier.knn.k","The number of neighbors to use.");
if (this->m_RegressionFlag)
{
// Decision rule : mean / median
AddParameter(ParameterType_Choice, "classifier.knn.rule", "Decision rule");
SetParameterDescription("classifier.knn.rule", "Decision rule for regression output");
AddChoice("classifier.knn.rule.mean", "Mean of neighbors values");
SetParameterDescription("classifier.knn.rule.mean","Returns the mean of neighbors values");
AddChoice("classifier.knn.rule.median", "Median of neighbors values");
SetParameterDescription("classifier.knn.rule.median","Returns the median of neighbors values");
}
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::TrainKNN(typename ListSampleType::Pointer trainingListSample,
typename TargetListSampleType::Pointer trainingLabeledListSample,
std::string modelPath)
{
typedef otb::KNearestNeighborsMachineLearningModel<InputValueType, OutputValueType> KNNType;
typename KNNType::Pointer knnClassifier = KNNType::New();
knnClassifier->SetRegressionMode(this->m_RegressionFlag);
knnClassifier->SetInputListSample(trainingListSample);
knnClassifier->SetTargetListSample(trainingLabeledListSample);
7172737475767778798081828384858687888990919293
knnClassifier->SetK(GetParameterInt("classifier.knn.k"));
if (this->m_RegressionFlag)
{
std::string decision = this->GetParameterString("classifier.knn.rule");
if (decision == "mean")
{
knnClassifier->SetDecisionRule(KNNType::KNN_MEAN);
}
else if (decision == "median")
{
knnClassifier->SetDecisionRule(KNNType::KNN_MEDIAN);
}
}
knnClassifier->Train();
knnClassifier->Save(modelPath);
}
} //end namespace wrapper
} //end namespace otb
#endif