- 
Calmel Blaise authored13229d7f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""
QRame
Copyright (C) 2023  INRAE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""
import numpy as np
from PyQt5 import QtCore
from datetime import datetime
import matplotlib.dates as mdates
class FigTimeDischarge(object):
    """Class to plot chronological discharge graph.
        Attributes
        ----------
        canvas: MplCanvas
            Object of MplCanvas a FigureCanvas
        fig: Object
            Figure object of the canvas
        units: dict
            Dictionary of units from units_conversion
        _translate: QCoreApplication.translate object
            Save words which need to be translated
        hover_connection: int
            Index to data cursor connection
        annot: Annotation
            Annotation object for data cursor
        """
    def __init__(self, canvas, units):
        """Initialize object using the specified canvas.
        Parameters
        ----------
        canvas: MplCanvas
            Object of MplCanvas
        units: dict
            Dictionary of units from units_conversion
        """
        # Initialize attributes
        self.canvas = canvas
        self.fig = canvas.fig
        self.units = units
        self.hover_connection = None
        self.annot = None
        self._translate = QtCore.QCoreApplication.translate
    def create(self, mean_selected_meas, selected_meas=None):
        """Create the axes and lines for the figure.
        Parameters
        ----------
        mean_selected_meas: pandas DataFrame
            Measurement results dataframe
        selected_meas: str
            Name of the selected measurement
        """
        # Clear the plot
        self.fig.clear()
        # Configure axis
        self.fig.ax = self.fig.add_subplot(1, 1, 1)
        # Set margins and padding for figure
        # self.fig.subplots_adjust(left=0.03, bottom=0.25, right=0.99, top=0.99, wspace=0.1, hspace=0)
        df = mean_selected_meas
        df['color'] = 'k'
        # Change color for selected
        if selected_meas and selected_meas in df.meas_name.values:
            df.loc[df['meas_name'] == selected_meas, 'color'] = 'darkorange'
        # Plot horizontal line if there is less than 3 days
        if df[['start_time', 'end_time']].max().max() - df[['start_time', 'end_time']].min().min() < 1210000:
            is_time = ~np.logical_or(np.isnan(df.start_time), np.isnan(df.end_time))
            df_time = df.loc[is_time, ['meas_name', 'tr_q_total', 'start_time', 'end_time', 'color']]
            start_datetime = [datetime.utcfromtimestamp(i) for i in df_time.start_time]
            end_datetime = [datetime.utcfromtimestamp(i) for i in df_time.end_time]
            self.fig.ax.hlines(df_time.tr_q_total * self.units['Q'], start_datetime, end_datetime,
                               color=df_time.color, linewidth=2, zorder=0)
            # Highlight selected measurement in orange
            if selected_meas:
                df_selected = df.loc[df['meas_name'] == selected_meas]
                start_selected = [datetime.utcfromtimestamp(i) for i in df_selected.start_time if not np.isnan(i)]
                end_selected = [datetime.utcfromtimestamp(i) for i in df_selected.end_time if not np.isnan(i)]
                if len(start_selected) > 0 and len(start_selected) == len(end_selected):
                    self.fig.ax.hlines(df_selected.tr_q_total * self.units['Q'], start_selected, end_selected,
                                       color=df_selected.color, linewidth=3, zorder=1)
            # Plot data with only one date (start or end time) as scatter
            df_missing_time = df.loc[~is_time, ['meas_name', 'tr_q_total', 'start_time', 'end_time', 'color']]
            any_time = np.logical_or(~np.isnan(df_missing_time.start_time), ~np.isnan(df_missing_time.end_time))
            df_scatter = df_missing_time[any_time]
            df_scatter['time'] = df_scatter['start_time'].fillna(0) + df_scatter['end_time'].fillna(0)
            scatter_datetime = [datetime.utcfromtimestamp(i) for i in df_scatter.time]
            self.fig.ax.scatter(scatter_datetime, df_scatter['tr_q_total'] * self.units['Q'],
                                color=df_scatter.color, zorder=0)
            self.fig.ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b %H:%M'))
        else:
            df = df.groupby('meas_name').agg({'start_time': 'min', 'end_time': 'max', 'meas_mean_q': 'mean',
                                              'color': 'first'})
            mid_time = df[['start_time', 'end_time']].mean(axis=1)
            is_time = ~np.isnan(mid_time)
            mid_datetime = [datetime.utcfromtimestamp(i) for i in mid_time[is_time]]
            self.fig.ax.scatter(mid_datetime, df.loc[is_time, 'meas_mean_q'] * self.units['Q'],
                                color=df.loc[is_time, 'color'], zorder=0)
            self.fig.ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b %y'))
        self.fig.ax.tick_params(which="major", axis="x", pad=14, size=2)
        self.fig.autofmt_xdate()
        self.fig.ax.set_xlabel(self._translate('Main', 'Time'))
        self.fig.ax.set_ylabel(self._translate('Main', 'Discharge') + ' (' + self.units['label_Q'] + ')')
        self.fig.ax.xaxis.label.set_fontsize(12)
        self.fig.ax.yaxis.label.set_fontsize(12)
        self.fig.ax.tick_params(axis='both', direction='in', bottom=True, top=True, left=True, right=True)
        self.fig.ax.grid()
    def hover(self, event):
        """Determines if the user has selected a location with temperature data and makes
        annotation visible and calls method to update the text of the annotation. If the
        location is not valid the existing annotation is hidden.
        Parameters
        ----------
        event: MouseEvent
            Triggered when mouse button is pressed.
        """
        # Set annotation to visible
        vis = self.annot.get_visible()
        # Determine if mouse location references a data point in the plot and update the annotation.
        if event.inaxes == self.fig.ax and event.button != 3:
            cont = False
            ind = None
            plotted_line = None
            # Find the transect(line) that contains the mouse click
            for plotted_line in self.fig.ax.lines:
                cont, ind = plotted_line.contains(event)
                if cont:
                    break
            if cont:
                self.update_annot(ind, plotted_line)
                self.annot.set_visible(True)
                self.canvas.draw_idle()
            else:
                # If the cursor location is not associated with the plotted data hide the annotation.
                if vis:
                    self.annot.set_visible(False)
                    self.canvas.draw_idle()
    def update_annot(self, ind, plt_ref):
        """Updates the location and text and makes visible the previously initialized and hidden annotation.
        Parameters
        ----------
        ind: dict
            Contains data selected.
        plt_ref: Line2D
            Reference containing plotted data
        vector_ref: Quiver
            Refernece containing plotted data
        ref_label: str
            Label used to ID data type in annotation
        """
        pos = plt_ref._xy[ind["ind"][0]]
        # Shift annotation box left or right depending on which half of the axis the pos x is located and the
        # direction of x increasing.
        if plt_ref.axes.viewLim.intervalx[0] < plt_ref.axes.viewLim.intervalx[1]:
            if pos[0] < (plt_ref.axes.viewLim.intervalx[0] + plt_ref.axes.viewLim.intervalx[1]) / 2:
                self.annot._x = -20
            else:
                self.annot._x = -80
        else:
            if pos[0] < (plt_ref.axes.viewLim.intervalx[0] + plt_ref.axes.viewLim.intervalx[1]) / 2:
                self.annot._x = -80
            else:
                self.annot._x = -20
        # Shift annotation box up or down depending on which half of the axis the pos y is located and the
        # direction of y increasing.
        if plt_ref.axes.viewLim.intervaly[0] < plt_ref.axes.viewLim.intervaly[1]:
            if pos[1] > (plt_ref.axes.viewLim.intervaly[0] + plt_ref.axes.viewLim.intervaly[1]) / 2:
                self.annot._y = -40
            else:
                self.annot._y = 20
        else:
            if pos[1] > (plt_ref.axes.viewLim.intervaly[0] + plt_ref.axes.viewLim.intervaly[1]) / 2:
                self.annot._y = 20
            else:
                self.annot._y = -40
        self.annot.xy = pos
        text = 'x: {:.2f}, y: {:.2f}'.format(pos[0], pos[1])
        self.annot.set_text(text)
    def set_hover_connection(self, setting):
        """Turns the connection to the mouse event on or off.
        Parameters
        ----------
        setting: bool
            Boolean to specify whether the connection for the mouse event is active or not.
        """
        if setting and self.hover_connection is None:
            self.hover_connection = self.canvas.mpl_connect('button_press_event', self.hover)
        elif not setting:
            self.canvas.mpl_disconnect(self.hover_connection)
            self.hover_connection = None
            self.annot.set_visible(False)
            self.canvas.draw_idle()