An error occurred while loading the file. Please try again.
-
Grand Francois authored086fbf48
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Copyright (c) 2020-2022 INRAE
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
"""
"""Train some model from TFRecords"""
import argparse
import logging
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
from decloud.core import system
from decloud.models.model_factory import ModelFactory
from decloud.models.tfrecord import TFRecords
from decloud.models import metrics
from decloud.models.callbacks import AdditionalValidationSets, ArchiveCheckpoint
from decloud.core.summary import PreviewsCallback
from decloud.models.utils import get_available_gpus
from decloud.models.utils import _is_chief
def main(args):
"""
Run the training and validation process
"""
# Application parameters parsing
parser = argparse.ArgumentParser(description="Network training from TFRecords")
parser.add_argument("--training_record", help="Folder containing shards and .json files")
parser.add_argument("--valid_records", nargs='+', default=[], help="Folders containing shards and .json files")
parser.add_argument("-m", "--model", required=True, help="Model name")
parser.add_argument("--logdir", help="Directory to write tensorboard summaries")
parser.add_argument('-lr', '--learning_rate', type=float, default=0.0002)
parser.add_argument('-bt', '--batch_size_train', type=int, default=4)
parser.add_argument('-bv', '--batch_size_valid', type=int, default=4)
parser.add_argument('-e', '--epochs', type=int, default=300,
help="Nb of epochs. If set to zero, only performs the model saving")
parser.add_argument('--ckpt_dir', help="Directory to save & load model checkpoints")
parser.add_argument('--out_savedmodel', help="Parent directory for output SavedModel")
parser.add_argument('--save_best', dest='save_best', action='store_true',
help="SavedModel is written when the metric specified with \"save_best_ref\" is the lowest")
parser.set_defaults(save_best=False)
parser.add_argument('--save_best_ref', help="Name of the scalar metric to save the best model", default="val_loss")
parser.add_argument('--all_metrics', dest='all_metrics', action='store_true',
help="Performs validation using all metrics")
parser.set_defaults(all_metrics=False)
parser.add_argument('--previews', dest='previews', action='store_true',
help="Enable images summary (from validation datasets)")
parser.set_defaults(previews=False)
parser.add_argument('--verbose', dest='verbose', action='store_true',
help="Enable full Keras verbosity, can be useful for debug")
parser.set_defaults(verbose=False)
parser.add_argument('--early_stopping', dest='early_stopping', action='store_true',
help="Stops the training if the loss doesn't improve during several epochs")
parser.set_defaults(early_stopping=False)
parser.add_argument('--profiling', default=0, help="Batch number (e.g. 45), or range of batches (e.g. "
"(start, end)) to profile. Default is off")
parser.add_argument('--strategy', default='mirrored',
const='mirrored',
nargs='?',
choices=['mirrored', 'multiworker', 'singlecpu'],
help='tf.distribute strategy')
parser.add_argument('--plot_model', dest='plot_model', action='store_true',
help="Whether we want to plot the model architecture. Requires additional libraries")
parser.add_argument('--shuffle_buffer_size', type=int, default=5000,
help="Shuffle buffer size. To be decreased if low RAM is available.")
parser.set_defaults(plot_model=False)
if len(sys.argv) == 1:
parser.print_help()
parser.exit()
params = parser.parse_args(args)
# Logging
system.basic_logging_init()
# Check that we have at least one training dataset
if not params.training_record:
logging.error("Please provide at least one training dataset.")
system.terminate()
# Check that we have a SavedModel path if save_best is true
if params.save_best and not params.out_savedmodel:
logging.error("Please provide a path for the output SavedModel.")
system.terminate()
# Strategy
if params.strategy == "multiworker":
# Srategy cf http://www.idris.fr/jean-zay/gpu/jean-zay-gpu-tf-multi.html
# build multi-worker environment from Slurm variables
cluster_resolver = tf.distribute.cluster_resolver.SlurmClusterResolver(port_base=13565) # On Jean-Zay cluster
# use NCCL communication protocol
implementation = tf.distribute.experimental.CommunicationImplementation.NCCL
communication_options = tf.distribute.experimental.CommunicationOptions(implementation=implementation)
# declare distribution strategy
strategy = tf.distribute.MultiWorkerMirroredStrategy(cluster_resolver=cluster_resolver,
communication_options=communication_options)
# get total number of workers
n_workers = int(os.environ['SLURM_NTASKS'])
elif params.strategy == "mirrored":
strategy = tf.distribute.MirroredStrategy()
# Get number of GPUs
n_workers = len(get_available_gpus())
elif params.strategy == "singlecpu":
strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0")
n_workers = 0
else:
logging.error("Please provide a supported tf.distribute strategy.")
system.terminate()
# CPU or GPU
if n_workers == 0:
logging.info('No GPU found, using CPU')
n_workers = 1
suffix = "_cpu"
else:
logging.info('Number of available GPUs: %s', n_workers)
suffix = "_{}gpus".format(n_workers)
# Name of the experiment
expe_name = "{}".format(params.model)
expe_name += "_{}".format(system.get_commit_hash())
expe_name += "_bt{}".format(params.batch_size_train)
expe_name += "_bv{}".format(params.batch_size_valid)
expe_name += "_lr{}".format(params.learning_rate)
expe_name += "_e{}".format(params.epochs)
expe_name += suffix
if True: # TODO: detete, just used for review
# Date tag
date_tag = time.strftime("%d-%m-%y-%H%M%S")
# adding the info to the SavedModel path
out_savedmodel = None if params.out_savedmodel is None else \
system.pathify(params.out_savedmodel) + expe_name + date_tag
# Scaling batch size and learning rate accordingly to number of workers
batch_size_train = params.batch_size_train * n_workers
batch_size_valid = params.batch_size_valid * n_workers
learning_rate = params.learning_rate * n_workers
logging.info("Learning rate was scaled to %s, effective batch size is %s (%s workers)",
learning_rate, batch_size_train, n_workers)
# Datasets
tfrecord_train = TFRecords(params.training_record) if params.training_record else None
tfrecord_valid_array = [TFRecords(rep) for rep in params.valid_records]
# Model instantiation
model = ModelFactory.get_model(params.model, dataset_shapes=tfrecord_train.output_shape)
# TF.dataset-s instantiation
tf_ds_train = tfrecord_train.read(batch_size=batch_size_train,
target_keys=model.model_output_keys,
n_workers=n_workers,
shuffle_buffer_size=params.shuffle_buffer_size) if tfrecord_train else None
tf_ds_valid = [tfrecord.read(batch_size=batch_size_valid,
target_keys=model.model_output_keys,
n_workers=n_workers) for tfrecord in tfrecord_valid_array]
with strategy.scope():
# Creating the Keras network corresponding to the model
model.create_network()
# Metrics
metrics_list = [metrics.MeanSquaredError(), metrics.PSNR()]
if params.all_metrics:
metrics_list += [metrics.StructuralSimilarity(), metrics.SpectralAngle()] # A bit slow to compute
# Creating the model or loading it from checkpoints
logging.info("Loading model \"%s\"", params.model)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss=model.get_loss(),
metrics={out_key: metrics_list for out_key in model.model_output_keys})
model.summary(strategy)
if params.plot_model:
model.plot('/tmp/model_architecture_{}.png'.format(model.__class__.__name__), strategy)
callbacks = []
# Define the checkpoint callback
if params.ckpt_dir:
if params.strategy == 'singlecpu':
logging.warning('Checkpoints can not be saved while using singlecpu option. Discarding checkpoints')
else:
# Create a backup
backup_dir = system.pathify(params.ckpt_dir) + params.model
callbacks.append(keras.callbacks.experimental.BackupAndRestore(backup_dir=backup_dir))
# Save the checkpoint to a persistent location
callbacks.append(ArchiveCheckpoint(backup_dir, strategy))
# Define the Keras TensorBoard callback.
logdir = None
if params.logdir:
logdir = system.pathify(params.logdir) + "{}_{}".format(date_tag, expe_name)
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir,
profile_batch=params.profiling)
callbacks.append(tensorboard_callback)
# Define the previews callback
if params.previews:
# We run the preview on an arbitrary sample of the validation dataset
sample = tfrecord_valid_array[0].read_one_sample(target_keys=model.model_output_keys)
previews_callback = PreviewsCallback(sample, logdir, input_keys=model.dataset_input_keys,
target_keys=model.model_output_keys)
callbacks.append(previews_callback)
# Validation on multiple datasets
if tf_ds_valid:
additional_validation_callback = AdditionalValidationSets(tf_ds_valid[1:], logdir)
callbacks.append(additional_validation_callback)
# Save best checkpoint only
if params.save_best:
callbacks.append(keras.callbacks.ModelCheckpoint(params.out_savedmodel, save_best_only=True,
monitor=params.save_best_ref, mode='min'))
# Early stopping if the training stops improving
if params.early_stopping:
callbacks.append(keras.callbacks.EarlyStopping(monitor=params.save_best_ref, min_delta=0.0001,
patience=10, mode='min'))
# Training
model.fit(tf_ds_train,
epochs=params.epochs,
validation_data=tf_ds_valid[0] if tf_ds_valid else None,
callbacks=callbacks,
verbose=1 if params.verbose else 2)
# Multiworker training tries to save the model multiple times and this can create corrupted models
# Thus we save the model at the final path only for the 'chief' worker
if params.strategy != 'singlecpu':
if not _is_chief(strategy):
out_savedmodel = None
# Export SavedModel
if out_savedmodel and not params.save_best:
logging.info("Saving SavedModel in %s", out_savedmodel)
model.save(out_savedmodel)
if __name__ == "__main__":
system.run_and_terminate(main)