An error occurred while loading the file. Please try again.
-
Mathias Chouet authored6e902ec7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import base64
import pandas as pd
import numpy as np
import glob
import io
import os
from textwrap import dedent as d
import re
import matplotlib.pyplot as plt
import plotly
import plotly.graph_objs as go
from scipy.interpolate import interp1d
from utils.sunposition import sunpos
import utils.utils as u
import utils.auxdata as ua
from process.process import *
coordf = glob.glob("/DATA/OBS2CO/data/info/mesures_in_situ.csv")[0]
coords = pd.read_csv(coordf, sep=';')
dirfig = os.path.abspath('/DATA/OBS2CO/data/trios/fig')
awrfiles = glob.glob("/DATA/OBS2CO/data/trios/raw/aw*idpr*.csv")
# awrfiles = glob.glob("/DATA/OBS2CO/data/trios/test_setup/raw/aw*idpr*.csv")
swrfiles = glob.glob("/DATA/OBS2CO/data/trios/raw/Lu0*idpr*.csv")
iopw = ua.iopw()
iopw.load_iopw()
def add_curve(ax, x, mean, std, c='red', label=''):
ax.plot(x, mean, linestyle='solid', c=c, lw=2.5,
alpha=0.8, label=label)
ax.fill_between(x,
mean - std,
mean + std, alpha=0.35, color=c)
idpr = '167'
# get idpr numbers
idprs = np.unique([re.findall(r'idpr(\d+)', x)[0] for x in swrfiles])
#idprs = np.array(['170'])
# loop over idpr
for idpr in idprs:
c = coords[coords.ID_prel == int(idpr)] # .values[0]
lat = c['Lat'].values[0]
lon = c['Lon'].values[0]
alt = 0 # c['Altitude']
name = c['ID_lac'].values[0]
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 8))
fig.subplots_adjust(left=0.1, right=0.9, hspace=.5, wspace=0.65)
# -----------------------------------------------
# SWR processing
# -----------------------------------------------
uswr = u.swr_data(idpr, swrfiles)
if uswr.file:
df, wl_swr = uswr.reader(lat, lon, alt)
df['sza', ''] = np.nan
for index, row in df.iterrows():
# print index
sza = sunpos(index, lat, lon, alt)[1]
df.at[index, 'sza'] = sza
swr = swr_process(df, wl_swr)
Rrs_swr = swr.call_process()
add_curve(ax, wl_swr, Rrs_swr.transpose().mean(axis=1), Rrs_swr.transpose().std(axis=1), label='swr', c='black')
Rrs_swr = swr.call_process(shade_corr=True)
add_curve(ax, wl_swr, Rrs_swr.transpose().mean(axis=1), Rrs_swr.transpose().std(axis=1), label='swr', c='red')
# -----------------------------------------------
# AWR processing
# -----------------------------------------------
azi = 135
vza = 40
awr = u.awr_data(idpr, awrfiles)
if awr.Edf:
index_idx = [0]
d = u.data(index_idx)
Ed, wl_Ed = d.load_csv(awr.Edf)
Lsky, wl_Lsky = d.load_csv(awr.Lskyf)
Lt, wl_Lt = d.load_csv(awr.Ltf)
# ''' interpolate Ed and Lsky data upon Lt wavelength'''
wl = wl_Lt
Lt.columns = pd.MultiIndex.from_tuples(zip(['Lt'] * len(wl), wl), names=['param', 'wl'])
intEd = interp1d(wl_Ed, Ed.values, fill_value='extrapolate')(wl)
newEd = pd.DataFrame(index=Ed.index,
columns=pd.MultiIndex.from_tuples(zip(['Ed'] * len(wl), wl), names=['param', 'wl']),
data=intEd)
intLsky = interp1d(wl_Lsky, Lsky.values, fill_value='extrapolate')(wl)
newLsky = pd.DataFrame(index=Lsky.index, columns=pd.MultiIndex.from_tuples(zip(['Lsky'] * len(wl), wl),
names=['param', 'wl']), data=intLsky)
awr = awr_process()
ws = [2]
print(azi, vza)
Lsky = newLsky # .loc[(newLsky.index.get_level_values(1) == vza) & (newLsky.index.get_level_values(2) == azi)]
Ed = newEd # .loc[(newEd.index.get_level_values(1) == vza) & (newEd.index.get_level_values(2) == azi)]
# Lsky_idx = Lsky.index
# Ed_idx= Ed.index
# Lt_idx = Lt.index
# Lsky.reset_index(level=[1,2],inplace=True)
# Ed.reset_index(level=[1,2],inplace=True)
# Lt.reset_index(level=[1,2],inplace=True)
# merge sensor data on time
df = pd.merge_asof(Lt, Ed, left_index=True, right_index=True, tolerance=pd.Timedelta("2 seconds"),
direction="nearest")
df = pd.merge_asof(df, Lsky, left_index=True, right_index=True, tolerance=pd.Timedelta("2 seconds"),
direction="nearest")
# add solar angle data and idpr
# compute solar angle (mean between fisrt and last aqcuisition time
df['sza', ''] = np.nan
for index, row in df.iterrows():
# print index
sza = sunpos(index, lat, lon, alt)[1]
df.at[index, 'sza'] = sza
rho_h = awr.get_rho_values([df.sza.mean()], [vza], [azi], wl=wl)
rho15 = awr.get_rho_mobley(awr.rhoM2015, [df.sza.mean()], [vza], [azi], [ws])
rho99 = awr.get_rho_mobley(awr.rhoM1999, [df.sza.mean()], [vza], [azi], [ws])
Rrs_h = (df.loc[:, 'Lt'] - rho_h * df.loc[:, 'Lsky']) / df.loc[:, 'Ed']
Rrs15 = (df.loc[:, 'Lt'] - rho15 * df.loc[:, 'Lsky']) / df.loc[:, 'Ed']
Rrs99 = (df.loc[:, 'Lt'] - rho99 * df.loc[:, 'Lsky']) / df.loc[:, 'Ed']
# plt.figure()
add_curve(ax, wl, Rrs15.transpose().mean(axis=1), Rrs15.transpose().std(axis=1),
label='M2015 (' + str(rho15) + ')')
add_curve(ax, wl, Rrs99.transpose().mean(axis=1), Rrs99.transpose().std(axis=1), c='orange',
label='M1999(' + str(rho99) + ')')
add_curve(ax, wl, Rrs_h.transpose().mean(axis=1), Rrs_h.transpose().std(axis=1), c='grey',
label='h(' + str(rho_h.mean()) + ')')
ax.set_title('azi=' + str(azi) + ', vza=' + str(vza) + ', sza=' + str(sza))
ax.legend(loc='best', frameon=False)
ax.set_ylabel(r'$R_{rs}\ (sr^{-1})$')
ax.set_xlabel(r'Wavelength (nm)')
fig.savefig(os.path.join(dirfig, 'trios_awr_' + name + '_idpr' + idpr + '.png'))
plt.close()